PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction

Article English OPEN
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina;
  • Publisher: Hindawi Publishing Corporation
  • Journal: Computational Intelligence and Neuroscience,volume 2,011 (issn: 1687-5265, eissn: 1687-5273)
  • Publisher copyright policies & self-archiving
  • Related identifiers: pmc: PMC3070217, doi: 10.1155/2011/406391
  • Subject: R858-859.7 | Research Article | Computer applications to medicine. Medical informatics | Neurosciences. Biological psychiatry. Neuropsychiatry | RC321-571 | Article Subject
    acm: ComputingMethodologies_PATTERNRECOGNITION

Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG s... View more
  • References (22)
    22 references, page 1 of 3

    Dauwels, J., Vialatte, F., Cichocki, A.. A comparative study of synchrony measures for the early detection of Alzheimer's disease based on EEG. ; 4984: 112-125

    Petrosian, A. A., Prokhorov, D. V., Lajara-Nanson, W., Schiffer, R. B.. Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG. Clinical Neurophysiology. 2001; 112 (8): 1378-1387

    Bao, F. S., Lie, D. Y. C., Zhang, Y.. A new approach to automated epileptic diagnosis using EEG and probabilistic neural network. ; 2: 482-486

    Dauwels, J., Eskandar, E., Cash, S.. Localization of seizure onset area from intracranial non-seizure EEG by exploiting locally enhanced synchrony. : 2180-2183

    Gardner, A. B., Krieger, A. M., Vachtsevanos, G., Litt, B.. One-class novelty detection for seizure analysis from intracranial EEG. Journal of Machine Learning Research. 2006; 7: 1025-1044

    Ko, C. W., Chung, H. W.. Automatic spike detection via an artificial neural network using raw EEG data: effects of data preparation and implications in the limitations of online recognition. Clinical Neurophysiology. 2000; 111 (3): 477-481

    Srinivasan, V., Eswaran, C., Sriraam, N.. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine. 2007; 11 (3): 288-295

    Bao, F. S., Gao, J. M., Hu, J., Lie, D. Y. C., Zhang, Y., Oommen, K. J.. Automated epilepsy diagnosis using interictal scalp EEG. : 6603-6607

    Lehnertz, K., Mormann, F., Kreuz, T., Andrzejak, R. G., Rieke, C., David, P., Elger, C. E.. Seizure prediction by nonlinear EEG analysis. IEEE Engineering in Medicine and Biology Magazine. 2003; 22 (1): 57-63

    O'Sullivan-Greene, E., Mareels, I., Freestone, D., Kulhmann, L., Burkitt, A.. A paradigm for epileptic seizure prediction using a coupled oscillator model of the brain. : 6428-6431

  • Related Organizations (8)
  • Metrics
Share - Bookmark