Landau levels on a torus

Preprint, Part of book or chapter of book English OPEN
Enrico Onofri;

Landau levels have represented a very rich field of research, which has gained widespread attention after their application to quantum Hall effect. In a particular gauge, the holomorphic gauge, they give a physical implementation of Bargmann's Hilbert space of ... View more
  • References (12)
    12 references, page 1 of 2

    [Alv85] O. Alvarez, Topological Quantization and Cohomology, Commun.Math.Phys. 100 (1985), 279-309.

    [Aok87] H. Aoki, Quantized Hall Effect, Rep. Progr. Phys. 50 (1987), 655-730.

    [Dub81] B.A. Dubrovin, Theta functions and non-linear equations, Russian Math. Surv. 36 (1981), no. 2, 11-92.

    [Fer94] R. Ferrari, The Quantum Hall Effect, Elementary Particles, Quantum Fields and Statistical Mechanics (M. Bonini, G. Marchesini, and E. Onofri, eds.), Universit`a di Parma, 1994, pp. 155-201.

    [Fub92] S. Fubini, Finite Euclidean magnetic group and theta functions, Int.J.Mod.Phys. A7 (1992), 4671- 4692.

    [Hir78] F. Hirzebruch, Topologial Methods in Algebraic Geometry, Grundlehren der mathematischen Wissenschaften, no. 131, Springer-Verlag, 1978.

    [KO89] J. R. Klauder and E. Onofri, Landau Levels and Geometric Quantization, Int. J.Mod. Phys. A (1989), 3939-3949.

    [Lig64] M. J. Lighthill, Fourier Analysis and Generalized Functions, Cambridge University Press, Cambridge, 1964.

    [LL58] L. D. Landau and E. M. Lifshitz, Quantum mechanics, Addison Wesley, Reading, Mass., 1958.

    [Put67] C. R. Putnam, Commutation Properties of Hilbert Space Operators and related topics, Erg.d.Math.und i.Grenz., vol. 36, Springer-Verlag, New York, 1967.

  • Metrics
Share - Bookmark