Modular Berry Connection for Entangled Subregions in AdS/CFT

Preprint, Article English OPEN
Czech, Bartłomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James;
(2017)

The Berry connection describes transformations induced by adiabatically varying Hamiltonians. We study how zero modes of the modular Hamiltonian are affected by varying the region that supplies the modular Hamiltonian. In the vacuum of a 2D conformal field theory, globa... View more
  • References (16)
    16 references, page 1 of 2

    [1] J. M. Maldacena, \The Large N limit of superconformal eld theories and supergravity," Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)] [hep-th/9711200].

    [2] S. Ryu and T. Takayanagi, \Holographic derivation of entanglement entropy from AdS/CFT," Phys. Rev. Lett. 96, 181602 (2006) [hep-th/0603001].

    [3] D. L. Ja eris, A. Lewkowycz, J. Maldacena and S. J. Suh, \Relative entropy equals bulk relative entropy," JHEP 1606, 004 (2016) [arXiv:1512.06431 [hep-th]].

    [4] A. Almheiri, X. Dong and D. Harlow, \Bulk Locality and Quantum Error Correction in AdS/CFT," JHEP 1504, 163 (2015) [arXiv:1411.7041 [hep-th]].

    [5] T. Faulkner and A. Lewkowycz, \Bulk locality from modular ow," JHEP 1707, 151 (2017) [arXiv:1704.05464 [hep-th]].

    [6] M. V. Berry, \Quantal phase factors accompanying adiabatic changes," Proc. Roy. Soc. Lond. A 392, 45 (1984).

    [7] F. Wilczek and A. Zee, \Appearance of Gauge Structure in Simple Dynamical Systems," Phys. Rev. Lett. 52, 2111 (1984).

    [8] B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, \A stereoscopic look into the bulk," JHEP 1607, 129 (2016) [arXiv:1604.03110 [hep-th]].

    [9] B. Czech, L. Lamprou, S. McCandlish and J. Sully, \Integral geometry and holography," JHEP 1510, 175 (2015) [arXiv:1505.05515 [hep-th]].

    [10] J. de Boer, F. M. Haehl, M. P. Heller and R. C. Myers, \Entanglement, holography and causal diamonds," JHEP 1608, 162 (2016) [arXiv:1606.03307 [hep-th]].

  • Metrics
    No metrics available
Share - Bookmark