Alginate-Poly(ethylene glycol) Hybrid Microspheres for Primary Cell Microencapsulation

Article, Other literature type English OPEN
Mahou, Redouan ; Meier, Raphael ; Bühler, Léo ; Wandrey, Christine (2014)
  • Publisher: Multidisciplinary Digital Publishing Institute
  • Journal: Materials, volume 7, issue 1, pages 275-286 (issn: 1996-1944, eissn: 1996-1944)
  • Related identifiers: pmc: PMC5453158, doi: 10.3390/ma7010275
  • Subject: alginate | QC120-168.85 | cell encapsulation | biocompatibility | Engineering (General). Civil engineering (General) | Technology | Article | TA1-2040 | cell transplantation | poly(ethylene glycol) | T | hydrogel | microencapsulation | Electrical engineering. Electronics. Nuclear engineering | TK1-9971 | Microscopy | QH201-278.5 | Descriptive and experimental mechanics

The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol) hybrid microspheres (alg-PEG-M) were produced by combining ionotropic gelation of sodium alginate (Na-alg) using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol) (PEG-VS). In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells) as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.
  • References (36)
    36 references, page 1 of 4

    1. Bonavita, A.G.; Quaresma, K.; Cotta-de-Almeida, V.; Pinto, M.A.; Saraiva, R.M.; Alves, L.A. Hepatocyte xenotransplantation for treating liver disease. Xenotransplantation 2010, 17, 181-187.

    2. Paul, A.; Ge, Y.; Prakash, S.; Shum-Tim, D. Microencapsulated stem cells for tissue repairing: Implications in cell-based myocardial therapy. Regener. Med. 2009, 4, 733-745.

    3. De Vos, P.; Faas, M.M.; Strand, B.; Calafiore, R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006, 27, 5603-5617.

    4. Hernández, R.M.; Orive, G.; Murara, A.; Pedraz, J.L. Microcapsules and microcarriers for in situ cell delivery. Adv. Drug Deliv. Rev. 2010, 62, 711-730.

    5. Rokstad, A.M.; Brekke, O.L.; Steinkjer, B.; Ryan, L.; Kolláriková, G.; Strand, B.L.; Skjåk-Braek, G.; Lacik, I.; Espevik, T.; Mollnes, T.E. Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a human whole blood model. Acta Biomater. 2011, 7, 2566-2578.

    6. Rokstad, A.M.; Brekke, O.L.; Steinkjer, B.; Ryan, L.; Kolláriková, G.; Strand, B.L.; Skjåk-Braek, G.; Lambris, J.D.; Lacik, I.; Mollnes, T.E.; et al. The induction of cytokines by polycation containing microspheres by a complement dependent mechanism. Biomaterials 2013, 34, 621-630.

    7. Moyer, H.R.; Kinney, R.C.; Singh, K.A.; Williams, J.K.; Schwartz, Z.; Boyan, B.D. Alginate microencapsulation technology for the percutaneous delivery of adipose-derived stem cells. Ann. Plast. Surg. 2010, 65, 497-503.

    8. Malpique, R.; Osorio, L.M.; Ferreira, D.S.; Ehrhart, F.; Brito, C.; Zimmermann, H.; Alves, P.M.; Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres. Tissue Eng. Methods 2010, 16, 965-977.

    9. Park, H.S.; Ham, D.S.; You, Y.H.; Shin, J.; Kim, J.W; Jo, J.H; Kim, O.Y.; Khang, G.; Yoon, K.H. Successful xenogenic islet transplantation with Ba2+-Alginate encapsulation. Tissue Eng. Regen. Med. 2010, 7, 523-530.

    10. Penolazzi, L.; Tavanti, E.; Vecchiatini, R.; Lambertini, E.; Vesce, F.; Gambari, R.; Mazzitelli, S.; Mancuso, F.; Luca, G.; Nastruzzi, C.; et al. Encapsulation of mesenchymal stem cells from Wharton's Jelly in alginate microbeads. Tissue Eng. Methods 2010, 16, 141-155.

  • Metrics
    No metrics available
Share - Bookmark