Three-dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

Article, Preprint English OPEN
Lucarini, Valerio (2008)
  • Publisher: Springer
  • Related identifiers: doi: 10.1007/s10955-008-9668-y
  • Subject: Mathematical Physics | Physics - Data Analysis, Statistics and Probability | Nonlinear Sciences - Pattern Formation and Solitons | Computer Science - Computational Geometry | Condensed Matter - Statistical Mechanics | Condensed Matter - Other Condensed Matter | Condensed Matter - Disordered Systems and Neural Networks
    arxiv: Condensed Matter::Materials Science

We perturb the SC, BCC, and FCC crystal structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter a, and analyze the topological and metrical properties of the resulting Voronoi Tessellations (VT). The topological properties of ... View more
  • References (35)
    35 references, page 1 of 4

    Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Saunders, 1976.

    Aurenhammer F. (1991). Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure. ACM Computing Surveys, 23, 345-405.

    Averill F. W., Painter G. S. (1989), Pseudospherical integration scheme for electronic-structure calculations, Phys. Rev.

    B 39, 8115 Barber C. B., Dobkin D. P., and Huhdanpaa H.T. (1996). The Quickhull Algorithm for Convex Hulls, ACM Transactions on Mathematical Software 22, 469-483 Barrett T. M. (1997). Voronoi tessellation methods to delineate harvest units for spatial forest planning, Can. J. For.

    Res. 27(6): 903-910.

    Bassani F. and Pastori-Parravicini G., Electronic States and Optical Transitions in Solids, Pergamon Press, Oxford, 1975.

    Bennett, L. H., Kuriyama, M., Long, G. G., Melamud, M., Watson, R. E., and Weinert, M. (1986). Local atomic environments in periodic and aperiodic Al-Mn alloys, Phys. Rev. B 34, 8270-8272.

    Bowyer A. (1981). Computing Dirichlet tessellations, The Computer Journal 1981 24:162-166.

    Calka P. (2003). Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional Poisson Voronoi tessellation and a Poisson line process, Advances in Applied Probability 35, 551-562.

    Christ, N. H., Friedberg, R., and Lee, T. D. (1982). Random lattice field theory: General formulation. Nuclear Physics B 202, 89 - 125.

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Central Archive at the University of Reading - IRUS-UK 0 30
Share - Bookmark