publication . Article . 2015

Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; ...
Open Access English
  • Published: 12 Apr 2015 Journal: volume 6, issue 15, pages 13,772-13,789eissn: 1949-2553, Copyright policy
  • Publisher: Impact Journals LLC
Abstract
Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exos...
Subjects
free text keywords: Exosomes, Multiple Myeloma; Osteoclasts; Bone Formation, multiple myeloma, exosomes, osteoclasts, tumor microenvironment, Research Paper, Settore BIO/13 - Biologia Applicata
63 references, page 1 of 5

Raje, N, Roodman, GD. Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res. 2011; 17: 1278-1286 [PubMed]

Hameed, A, Brady, JJ, Dowling, P, Clynes, M, O'Gorman, P. Bone disease in multiple myeloma: pathophysiology and management. Cancer Growth Metastasis. 2014; 7: 33-42 [OpenAIRE] [PubMed]

Rossi, M, Di Martino, MT, Morelli, E, Leotta, M, Rizzo, A, Grimaldi, A, Misso, G, Tassone, P, Caraglia, M. Molecular targets for the treatment of multiple myeloma. Curr Cancer Drug Targets. 2012; 12: 757-767 [PubMed]

Sebag, M. CCR1 blockade and myeloma bone disease. Blood. 2012; 120: 1351-1352 [PubMed]

Terpos, E, Moulopoulos, LA, Dimopoulos, MA. Advances in imaging and the management of myeloma bone disease. J Clin Oncol. 2011; 29: 1907-1915 [PubMed]

Di Martino, MT, Leone, E, Amodio, N, Foresta, U, Lionetti, M, Pitari, MR, Cantafio, ME, Gulla, A, Conforti, F, Morelli, E, Tomaino, V, Rossi, M, Negrini, M, Ferrarini, M, Caraglia, M, Shammas, MA. Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clin Cancer Res. 2012; 18: 6260-6270 [OpenAIRE] [PubMed]

Ghobrial, IM. Revisiting treatment paradigms in high-risk smoldering multiple myeloma: out with the old, in with the new?. Leuk Lymphoma. 2013; 54: 2328-2330 [PubMed]

Rossi, M, Pitari, MR, Amodio, N, Di Martino, MT, Conforti, F, Leone, E, Botta, C, Paolino, FM, Del Giudice, T, Iuliano, E, Caraglia, M, Ferrarini, M, Giordano, A, Tagliaferri, P, Tassone, P. miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol. 2013; 228: 1506-1515 [OpenAIRE] [PubMed]

Heider, U, Fleissner, C, Zavrski, I, Kaiser, M, Hecht, M, Jakob, C, Sezer, O. Bone markers in multiple myeloma. Eur J Cancer. 2006; 42: 1544-1553 [PubMed]

Silbermann, R, Bolzoni, M, Storti, P, Guasco, D, Bonomini, S, Zhou, D, Wu, J, Anderson, JL, Windle, JJ, Aversa, F, David Roodman, G, Giuliani, N. Bone marrow monocyte-/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma. Leukemia. 2014; 28: 951-954 [OpenAIRE] [PubMed]

Abe, M, Hiura, K, Wilde, J, Shioyasono, A, Moriyama, K, Hashimoto, T, Kido, S, Oshima, T, Shibata, H, Ozaki, S, Inoue, D, Matsumoto, T. Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood. 2004; 104: 2484-2491 [PubMed]

Tian, E, Zhan, F, Walker, R, Rasmussen, E, Ma, Y, Barlogie, B, Shaughnessy, JD. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003; 349: 2483-2494 [PubMed]

Hsu, H, Lacey, DL, Dunstan, CR, Solovyev, I, Colombero, A, Timms, E, Tan, HL, Elliott, G, Kelley, MJ, Sarosi, I, Wang, L, Xia, XZ, Elliott, R, Chiu, L, Black, T, Scully, S. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A. 1999; 96: 3540-3545 [OpenAIRE] [PubMed]

Pearse, RN, Sordillo, EM, Yaccoby, S, Wong, BR, Liau, DF, Colman, N, Michaeli, J, Epstein, J, Choi, Y. Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci U S A. 2001; 98: 11581-11586 [OpenAIRE] [PubMed]

Giuliani, N, Bataille, R, Mancini, C, Lazzaretti, M, Barille, S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood. 2001; 98: 3527-3533 [PubMed]

63 references, page 1 of 5
Abstract
Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exos...
Subjects
free text keywords: Exosomes, Multiple Myeloma; Osteoclasts; Bone Formation, multiple myeloma, exosomes, osteoclasts, tumor microenvironment, Research Paper, Settore BIO/13 - Biologia Applicata
63 references, page 1 of 5

Raje, N, Roodman, GD. Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res. 2011; 17: 1278-1286 [PubMed]

Hameed, A, Brady, JJ, Dowling, P, Clynes, M, O'Gorman, P. Bone disease in multiple myeloma: pathophysiology and management. Cancer Growth Metastasis. 2014; 7: 33-42 [OpenAIRE] [PubMed]

Rossi, M, Di Martino, MT, Morelli, E, Leotta, M, Rizzo, A, Grimaldi, A, Misso, G, Tassone, P, Caraglia, M. Molecular targets for the treatment of multiple myeloma. Curr Cancer Drug Targets. 2012; 12: 757-767 [PubMed]

Sebag, M. CCR1 blockade and myeloma bone disease. Blood. 2012; 120: 1351-1352 [PubMed]

Terpos, E, Moulopoulos, LA, Dimopoulos, MA. Advances in imaging and the management of myeloma bone disease. J Clin Oncol. 2011; 29: 1907-1915 [PubMed]

Di Martino, MT, Leone, E, Amodio, N, Foresta, U, Lionetti, M, Pitari, MR, Cantafio, ME, Gulla, A, Conforti, F, Morelli, E, Tomaino, V, Rossi, M, Negrini, M, Ferrarini, M, Caraglia, M, Shammas, MA. Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clin Cancer Res. 2012; 18: 6260-6270 [OpenAIRE] [PubMed]

Ghobrial, IM. Revisiting treatment paradigms in high-risk smoldering multiple myeloma: out with the old, in with the new?. Leuk Lymphoma. 2013; 54: 2328-2330 [PubMed]

Rossi, M, Pitari, MR, Amodio, N, Di Martino, MT, Conforti, F, Leone, E, Botta, C, Paolino, FM, Del Giudice, T, Iuliano, E, Caraglia, M, Ferrarini, M, Giordano, A, Tagliaferri, P, Tassone, P. miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J Cell Physiol. 2013; 228: 1506-1515 [OpenAIRE] [PubMed]

Heider, U, Fleissner, C, Zavrski, I, Kaiser, M, Hecht, M, Jakob, C, Sezer, O. Bone markers in multiple myeloma. Eur J Cancer. 2006; 42: 1544-1553 [PubMed]

Silbermann, R, Bolzoni, M, Storti, P, Guasco, D, Bonomini, S, Zhou, D, Wu, J, Anderson, JL, Windle, JJ, Aversa, F, David Roodman, G, Giuliani, N. Bone marrow monocyte-/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma. Leukemia. 2014; 28: 951-954 [OpenAIRE] [PubMed]

Abe, M, Hiura, K, Wilde, J, Shioyasono, A, Moriyama, K, Hashimoto, T, Kido, S, Oshima, T, Shibata, H, Ozaki, S, Inoue, D, Matsumoto, T. Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood. 2004; 104: 2484-2491 [PubMed]

Tian, E, Zhan, F, Walker, R, Rasmussen, E, Ma, Y, Barlogie, B, Shaughnessy, JD. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003; 349: 2483-2494 [PubMed]

Hsu, H, Lacey, DL, Dunstan, CR, Solovyev, I, Colombero, A, Timms, E, Tan, HL, Elliott, G, Kelley, MJ, Sarosi, I, Wang, L, Xia, XZ, Elliott, R, Chiu, L, Black, T, Scully, S. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A. 1999; 96: 3540-3545 [OpenAIRE] [PubMed]

Pearse, RN, Sordillo, EM, Yaccoby, S, Wong, BR, Liau, DF, Colman, N, Michaeli, J, Epstein, J, Choi, Y. Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci U S A. 2001; 98: 11581-11586 [OpenAIRE] [PubMed]

Giuliani, N, Bataille, R, Mancini, C, Lazzaretti, M, Barille, S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood. 2001; 98: 3527-3533 [PubMed]

63 references, page 1 of 5
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2015

Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; ...