Groups acting on CAT(0) cube complexes

Article, Preprint, Other literature type English OPEN
Niblo, Graham; Reeves, Lawrence;
(1997)
  • Publisher: MSP
  • Journal: issn: 1465-3060
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.2140/gt.1997.1.1
  • Subject: 20F32 | 20G20 | Kazhdan's property (T) | 20E42 | hyperbolic geometry | 20F32, 20E42, 20G20 | CAT(0) cube complexes | locally CAT(-1) spaces | Mathematics - Group Theory | $Sp(n,1)$–manifolds | Tits' buildings | Mathematics - Differential Geometry

We show that groups satisfying Kazhdan’s property [math] have no unbounded actions on finite dimensional [math] cube complexes, and deduce that there is a locally [math] Riemannian manifold which is not homotopy equivalent to any finite dimensional, locally [math] cube ... View more
  • References (8)

    [1] M Bridson, Geodesics and curvature in metric simplicial complexes, from: “Group Theory from a Geometrical Viewpoint”, E Ghys et al (eds.), World Scientific (1991) 373-463

    [2] M Bridson, A Haefliger, Metric spaces of non-positive curvature, in preparation

    [3] M Bozejko, T Janusckiewicz, R T Spatzier, Infinite Coxeter groups do not have Kazhdan's property, J. Operator Theory 19 (1988) 63-37

    [4] M Davis, Buildings are CAT( 0 ), from: “Geometric methods in group theory”, P H Kropholler, G A Niblo and R Stohr (eds.), LMS Lecture Note Series, Cambridge University Press

    [5] M Gromov, Hyperbolic groups, from: “Essays in group theory”, S M Gersten (ed.), MSRI Publ. 8, Springer-Verlag (1987) 75-267

    [6] P de la Harpe, A Valette, La propri´et´e (T) de Kazhdan pour les groupes localement compacts, Asterisque 175 (1989), Soci´et´e Math´ematique de France

    [7] G A Niblo, L D Reeves, Coxeter groups act on CAT( 0 ) cube complexes, preprint

    [8] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Maths. Soc. (3) 71 (1995) 585-617

  • Metrics
Share - Bookmark