publication . Article . Other literature type . 2015

Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat

Robb, Ellen L.; Gawel, Justyna M.; Aksentijević, Dunja; Cocheme, Helena M.; Stewart, Tessa S.; Shchepinova, Maria M.; Qiang, He; Prime, Tracy A.; Bright, Thomas P.; James, Andrew M.; ...
Open Access English
  • Published: 01 Dec 2015
  • Publisher: Elsevier
Abstract
AbstractSuperoxide is the proximal reactive oxygen species (ROS) produced by the mitochondrial respiratory chain and plays a major role in pathological oxidative stress and redox signaling. While there are tools to detect or decrease mitochondrial superoxide, none can rapidly and specifically increase superoxide production within the mitochondrial matrix. This lack impedes progress, making it challenging to assess accurately the roles of mitochondrial superoxide in cells and in vivo. To address this unmet need, we synthesized and characterized a mitochondria-targeted redox cycler, MitoParaquat (MitoPQ) that comprises a triphenylphosphonium lipophilic cation conj...
Subjects
free text keywords: Physiology (medical), Biochemistry, Superoxide, chemistry.chemical_compound, chemistry, Reactive oxygen species, chemistry.chemical_classification, Electron Transport Complex I, Mitochondrion, Mitochondrial matrix, Paraquat, Redox, Oxidative stress, medicine.disease_cause, medicine, Science & Technology, Life Sciences & Biomedicine, Biochemistry & Molecular Biology, Endocrinology & Metabolism, MASS-SPECTROMETRY PROBE, COMPLEX-I, SIGNAL-TRANSDUCTION, DISMUTASE, MICE, CELLS, OVEREXPRESSION, THERAPEUTICS, Medicinal And Biomolecular Chemistry, Biochemistry And Cell Biology
Related Organizations
43 references, page 1 of 3

[1] M.P. Murphy, How mitochondria produce reactive oxygen species, Biochem. J. 417 (2009) 1-13.

[2] B. Chance, H. Sies, A. Boveris, Hydroperoxide metabolism in mammalian organs, Physiol. Ress 59 (1979) 527-605. [OpenAIRE]

[3] T. Finkel, Opinion: Radical medicine: treating ageing to cure disease, Nat Rev Mol. Cell Biol. 6 (2005) 971-976.

[4] E. Murphy, C. Steenbergen, Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury, Physiol. Rev. 88 (2008) 581-609.

[5] D.C. Wallace, W. Fan, V. Procaccio, Mitochondrial energetics and therapeutics, Annu. Rev. Pathol 5 (2010) 297-348.

[6] T. Finkel, Signal transduction by reactive oxygen species, J. Cell Biol. 194 (2011) 7-15. [OpenAIRE]

[7] Y. Collins, E.T. Chouchani, A.M. James, K.E. Menger, H.M. Cochemé, M. P. Murphy, Mitochondrial redox signalling at a glance, J. Cell Sci. 125 (2012) 801-806. [OpenAIRE]

[8] Y.M. Janssen-Heininger, B.T. Mossman, N.H. Heintz, H.J. Forman, B. Kalyanaraman, T. Finkel, J.S. Stamler, S.G. Rhee, A. van der Vliet, Redoxbased regulation of signal transduction: principles, pitfalls, and promises, Free Radic. Biol. Med. 45 (2008) 1-17.

[9] E.L. Robb, J.A. Stuart, Resveratrol interacts with estrogen receptor-beta to inhibit cell replicative growth and enhance stress resistance by upregulating mitochondrial superoxide dismutase, Free Radic. Biol. Med. 50 (2011) 821-831.

[10] Z. Chen, B. Siu, Y.S. Ho, R. Vincent, C.C. Chua, R.C. Hamdy, B.H. Chua, Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice, J. Mol. Cell. Card 30 (1998) 2281-2289.

[11] G.F. Kelso, A. Maroz, H.M. Cocheme, A. Logan, T.A. Prime, A.V. Peskin, C. C. Winterbourn, A.M. James, M.F. Ross, S. Brooker, C.M. Porteous, R. F. Anderson, M.P. Murphy, R.A.J. Smith, A mitochondria-targeted macrocyclic Mn(II) superoxide dismutase mimetic, Chemistry & Biology 19 (2012) 1237-1246. [OpenAIRE]

[12] Y. Li, T.-T. Huang, E.J. Carlson, S. Melov, P.C. Ursell, J.L. Olson, L.J. Noble, M. P. Yoshimura, C. Berger, P.H. Chan, D.C. Wallace, C.J. Epstein, Dilated cardiomyopathy and neonatal lethality in mutant mice lacking mamganese superoxide dismutase, Nat. Genet. 11 (1995) 376-381.

[13] M.D. Williams, H. Van Remmen, C.G. Conrad, T.-T. Huang, C.J. Epstein, A. Richardson, Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice, J. Biol. Chem. 273 (1998) 28510-28515.

[14] H. Van Remmen, W. Qi, M. Sabia, G. Freeman, L. Estlack, H. Yang, Z. Mao Guo, T. T. Huang, R. Strong, S. Lee, C.J. Epstein, A. Richardson, Multiple deficiencies in antioxidant enzymes in mice result in a compound increase in sensitivity to oxidative stress, Free Radic. Biol. Med. 36 (2004) 1625-1634.

[15] S.G. Rhee, Cell signaling. H2O2, a necessary evil for cell signaling, Science 312 (2006) 1882-1883.

43 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue