publication . Article . Other literature type . 2020

Core language brain network for fMRI language task used in clinical applications

Li, Qiongge; Ferraro, Gino Del; Pasquini, Luca; Peck, Kyung K.; Makse, Hernán A.; Holodny, Andrei I.;
Open Access English
  • Published: 01 Feb 2020 Journal: Network Neuroscience, volume 4, issue 1, pages 134-154 (eissn: 2472-1751, Copyright policy)
  • Publisher: MIT Press
Abstract
Functional magnetic resonance imaging (fMRI) is widely used in clinical applications to highlight brain areas involved in specific cognitive processes. Brain impairments, such as tumors, suppress the fMRI activation of the anatomical areas they invade and, thus, brain-damaged functional networks present missing links/areas of activation. The identification of the missing circuitry components is of crucial importance to estimate the damage extent. The study of functional networks associated with clinical tasks but performed by healthy individuals becomes, therefore, of paramount concern. These “healthy” networks can, indeed, be used as control networks for clinic...
Subjects
free text keywords: Research Articles, Task-based fMRI, Functional language networks, Healthy controls, Graph theory, Presurgical langugage mapping, k-core, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Funded by
NIH| Developmental Core
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5U54CA132378-03
  • Funding stream: NATIONAL CANCER INSTITUTE
,
NIH| MOUSE GENETICS
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 2P30CA008748-43
  • Funding stream: NATIONAL CANCER INSTITUTE
,
NSF| CRCNS: Targeted Stimulations in Brain Network of Networks
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1515022
,
NIH| Planning and Evaluation
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5U54CA137788-03
  • Funding stream: NATIONAL CANCER INSTITUTE
,
NIH| Supplement: Network Methods for Brain Imaging with Tumors
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 3R01EB022720-03S1
  • Funding stream: NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING
56 references, page 1 of 4

Aubert A., Costalat R., Duffau H., & Benali H. (2002). Modeling of pathophysiological coupling between brain electrical activation, energy metabolism and hemodynamics: Insights for the interpretation of intracerebral tumor imaging. Acta Biotheoretica, 50, 281–295.12675532 [OpenAIRE] [PubMed]

Bassett D. S., Wymbs N. F., Rombach M. P., Porter M. A., Mucha P. J., & Grafton S. T. (2013). Task-based core-periphery organization of human brain dynamics. PLoS Computational Biology, 9, e1003171.24086116 [OpenAIRE] [PubMed]

Bizzi A., Nava S., FerrèF., Castelli G., Aquino D., Ciaraffa F., … Piacentini S. (2012). Aphasia induced by gliomas growing in the ventrolateral frontal region: Assessment with diffusion MR tractography, functional MR imaging and neuropsychology. Cortex, 48, 255–272.22236887 [PubMed]

Bookheimer S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–188. [OpenAIRE]

Booth J. R., Wood L., Lu D., Houk J. C., & Bitan T. (2007). The role of the basal ganglia and cerebellum in language processing. Brain Research, 1133, 136–144.17189619 [OpenAIRE] [PubMed]

Brennan N. M. P., Whalen S., de Morales Branco D., O’Shea J. P., Norton I. H., & Golby A. J. (2007). Object naming is a more sensitive measure of speech localization than number counting: Converging evidence from direct cortical stimulation and fMRI. NeuroImage, 37, S100–S108.17572109 [PubMed]

Bullmore E., & Sporns O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 312.

Catani M., Mesulam M. M., Jakobsen E., Malik F., Martersteck A., Wieneke C., … Rogalski E. (2013). A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain, 136, 2619–2628.23820597 [OpenAIRE] [PubMed]

Chai L. R., Mattar M. G., Blank I. A., Fedorenko E., & Bassett D. S. (2016). Functional network dynamics of the language system. Cerebral Cortex, 26, 4148–4159.27550868 [OpenAIRE] [PubMed]

Chang E. F., Raygor K. P., & Berger M. S. (2015). Contemporary model of language organization: An overview for neurosurgeons. Journal of Neurosurgery, 122, 250–261.25423277 [PubMed]

Cox R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.8812068 [PubMed]

Del Ferraro G., Moreno A., Min B., Morone F., Pérez-RamírezÚ., Pérez-Cervera L., … Makse H. A. (2018). Finding influential nodes for integration in brain networks using optimal percolation theory. Nature Communications, 9, 2274.

Del Ferraro G., Pasquini L., Peck K. K., Holodny A., & Makse H. A. (2019). Structural and functional connectivity differences between brain tumo r patients who exhibit intra-operative speech impairments vs patients who show no speech deficit. (In preparation)

Devlin J. T., Matthews P. M., & Rushworth M. F. (2003). Semantic processing in the left inferior prefrontal cortex: A combined functional magnetic resonance imaging and transcranial magnetic stimulation study. Journal of Cognitive Neuroscience, 15, 71–84.12590844 [PubMed]

Dick A. S., Bernal B., & Tremblay P. (2014). The language connectome: New pathways, new concepts. Neuroscientist, 20, 453–467.24342910 [PubMed]

56 references, page 1 of 4
Related research
Abstract
Functional magnetic resonance imaging (fMRI) is widely used in clinical applications to highlight brain areas involved in specific cognitive processes. Brain impairments, such as tumors, suppress the fMRI activation of the anatomical areas they invade and, thus, brain-damaged functional networks present missing links/areas of activation. The identification of the missing circuitry components is of crucial importance to estimate the damage extent. The study of functional networks associated with clinical tasks but performed by healthy individuals becomes, therefore, of paramount concern. These “healthy” networks can, indeed, be used as control networks for clinic...
Subjects
free text keywords: Research Articles, Task-based fMRI, Functional language networks, Healthy controls, Graph theory, Presurgical langugage mapping, k-core, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Funded by
NIH| Developmental Core
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5U54CA132378-03
  • Funding stream: NATIONAL CANCER INSTITUTE
,
NIH| MOUSE GENETICS
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 2P30CA008748-43
  • Funding stream: NATIONAL CANCER INSTITUTE
,
NSF| CRCNS: Targeted Stimulations in Brain Network of Networks
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1515022
,
NIH| Planning and Evaluation
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5U54CA137788-03
  • Funding stream: NATIONAL CANCER INSTITUTE
,
NIH| Supplement: Network Methods for Brain Imaging with Tumors
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 3R01EB022720-03S1
  • Funding stream: NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING
56 references, page 1 of 4

Aubert A., Costalat R., Duffau H., & Benali H. (2002). Modeling of pathophysiological coupling between brain electrical activation, energy metabolism and hemodynamics: Insights for the interpretation of intracerebral tumor imaging. Acta Biotheoretica, 50, 281–295.12675532 [OpenAIRE] [PubMed]

Bassett D. S., Wymbs N. F., Rombach M. P., Porter M. A., Mucha P. J., & Grafton S. T. (2013). Task-based core-periphery organization of human brain dynamics. PLoS Computational Biology, 9, e1003171.24086116 [OpenAIRE] [PubMed]

Bizzi A., Nava S., FerrèF., Castelli G., Aquino D., Ciaraffa F., … Piacentini S. (2012). Aphasia induced by gliomas growing in the ventrolateral frontal region: Assessment with diffusion MR tractography, functional MR imaging and neuropsychology. Cortex, 48, 255–272.22236887 [PubMed]

Bookheimer S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–188. [OpenAIRE]

Booth J. R., Wood L., Lu D., Houk J. C., & Bitan T. (2007). The role of the basal ganglia and cerebellum in language processing. Brain Research, 1133, 136–144.17189619 [OpenAIRE] [PubMed]

Brennan N. M. P., Whalen S., de Morales Branco D., O’Shea J. P., Norton I. H., & Golby A. J. (2007). Object naming is a more sensitive measure of speech localization than number counting: Converging evidence from direct cortical stimulation and fMRI. NeuroImage, 37, S100–S108.17572109 [PubMed]

Bullmore E., & Sporns O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 312.

Catani M., Mesulam M. M., Jakobsen E., Malik F., Martersteck A., Wieneke C., … Rogalski E. (2013). A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain, 136, 2619–2628.23820597 [OpenAIRE] [PubMed]

Chai L. R., Mattar M. G., Blank I. A., Fedorenko E., & Bassett D. S. (2016). Functional network dynamics of the language system. Cerebral Cortex, 26, 4148–4159.27550868 [OpenAIRE] [PubMed]

Chang E. F., Raygor K. P., & Berger M. S. (2015). Contemporary model of language organization: An overview for neurosurgeons. Journal of Neurosurgery, 122, 250–261.25423277 [PubMed]

Cox R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.8812068 [PubMed]

Del Ferraro G., Moreno A., Min B., Morone F., Pérez-RamírezÚ., Pérez-Cervera L., … Makse H. A. (2018). Finding influential nodes for integration in brain networks using optimal percolation theory. Nature Communications, 9, 2274.

Del Ferraro G., Pasquini L., Peck K. K., Holodny A., & Makse H. A. (2019). Structural and functional connectivity differences between brain tumo r patients who exhibit intra-operative speech impairments vs patients who show no speech deficit. (In preparation)

Devlin J. T., Matthews P. M., & Rushworth M. F. (2003). Semantic processing in the left inferior prefrontal cortex: A combined functional magnetic resonance imaging and transcranial magnetic stimulation study. Journal of Cognitive Neuroscience, 15, 71–84.12590844 [PubMed]

Dick A. S., Bernal B., & Tremblay P. (2014). The language connectome: New pathways, new concepts. Neuroscientist, 20, 453–467.24342910 [PubMed]

56 references, page 1 of 4
Related research
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue