publication . Article . 2015

Parameters Optimization and Application to Glutamate Fermentation Model Using SVM

Zhang, Xiangsheng; Pan, Feng;
Open Access English
  • Published: 01 Jan 2015 Journal: Mathematical Problems in Engineering (issn: 1024-123X, eissn: 1563-5147, Copyright policy)
  • Publisher: Hindawi Limited
Abstract
Aimed at the parameters optimization in support vector machine (SVM) for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO) algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effectiveness of the proposed algorithm.
Subjects
free text keywords: TA1-2040, Mathematics, Engineering (General). Civil engineering (General), Article Subject, QA1-939
20 references, page 1 of 2

Xiao, J., Shi, Z. P., Gao, P., Feng, H., Duan, Z., Mao, Z.. On-line optimization of glutamate production based on balanced metabolic control by RQ. Bioprocess and Biosystems Engineering. 2006; 29 (2): 109-117 [OpenAIRE]

Feng, X., Yu, T., Wang, J.. Nonlinear GPC with in-place trained RLS-SVM model for DOC control in a fed-batch bioreactor. Chinese Journal of Chemical Engineering. 2012; 20 (5): 988-994

Gao, X. J., Wang, P., Qi, Y. S., Zhang, Y., Zhang, H. Q., Yan, A. J.. An optimal control strategy combining SVM with RGA for improving fermentation titer. Chinese Journal of Chemical Engineering. 2010; 18 (1): 95-101

Vapnik, V. N.. The Nature of Statistical Learning Theory. 1995

Li, Y. F., Wang, Z. F., Yuan, J. Q.. On-line fault detection using SVM-based dynamic MPLS for batch processes. Chinese Journal of Chemical Engineering. 2006; 14 (6): 754-758

Liu, Z. W., Cao, H. R., Chen, X. F., He, Z. J., Shen, Z. J.. Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings. Neurocomputing. 2013; 99: 399-410

Cristianmini, N., Shawe-Taylor, J.. An Introduction to Support Vector Machines. 2000

Smits, G. F., Jordaan, E. M.. Improved SVM regression using mixtures of kernels. : 2785-2790

Du, S.-X., Wu, T.-J.. Support vector machines for regression. Journal of System Simulation. 2003; 15 (11): 1580-1585, 1633

Lee, J. H., Lin, C. J.. Automatic Model Selection for Support Vector Machines. 2000

Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.. Choosing multiple parameters for support vector machines. Machine Learning. 2002; 46 (1–3): 131-159

Zheng, C. L., Jiao, L. C.. Automatic parameters Selection for SVM based on GA. : 1869-1872

Mariano, A. P., Costa, C. B. B., de Angelis, D. D. F., Filho, F. M., Atala, D. I. P., Maciel, M. R. W., Filho, R. M.. Optimisation of a fermentation process for butanol production by particle swarm optimisation (PSO). Journal of Chemical Technology and Biotechnology. 2010; 85 (7): 934-949

Wang, W., Guo, X. M., Wang, S. Y.. On the method of Kernel function selection in support vector machine. Journal of Liaoning Normal University ( Natural Science Edition). 2008; 31 (1): 1-4

Wu, Q.. A self-adaptive embedded chaotic particle swarm optimization for parameters selection of Wv-SVM. Expert Systems with Applications. 2011; 38 (1): 184-192

20 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2015

Parameters Optimization and Application to Glutamate Fermentation Model Using SVM

Zhang, Xiangsheng; Pan, Feng;