Parameters Optimization and Application to Glutamate Fermentation Model Using SVM

Article English OPEN
Xiangsheng Zhang; Feng Pan;

Aimed at the parameters optimization in support vector machine (SVM) for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO) algorithm which has better global searching ability. ... View more
  • References (20)
    20 references, page 1 of 2

    Xiao, J., Shi, Z. P., Gao, P., Feng, H., Duan, Z., Mao, Z.. On-line optimization of glutamate production based on balanced metabolic control by RQ. Bioprocess and Biosystems Engineering. 2006; 29 (2): 109-117

    Feng, X., Yu, T., Wang, J.. Nonlinear GPC with in-place trained RLS-SVM model for DOC control in a fed-batch bioreactor. Chinese Journal of Chemical Engineering. 2012; 20 (5): 988-994

    Gao, X. J., Wang, P., Qi, Y. S., Zhang, Y., Zhang, H. Q., Yan, A. J.. An optimal control strategy combining SVM with RGA for improving fermentation titer. Chinese Journal of Chemical Engineering. 2010; 18 (1): 95-101

    Vapnik, V. N.. The Nature of Statistical Learning Theory. 1995

    Li, Y. F., Wang, Z. F., Yuan, J. Q.. On-line fault detection using SVM-based dynamic MPLS for batch processes. Chinese Journal of Chemical Engineering. 2006; 14 (6): 754-758

    Liu, Z. W., Cao, H. R., Chen, X. F., He, Z. J., Shen, Z. J.. Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings. Neurocomputing. 2013; 99: 399-410

    Cristianmini, N., Shawe-Taylor, J.. An Introduction to Support Vector Machines. 2000

    Smits, G. F., Jordaan, E. M.. Improved SVM regression using mixtures of kernels. : 2785-2790

    Du, S.-X., Wu, T.-J.. Support vector machines for regression. Journal of System Simulation. 2003; 15 (11): 1580-1585, 1633

    Lee, J. H., Lin, C. J.. Automatic Model Selection for Support Vector Machines. 2000

  • Metrics
Share - Bookmark