publication . Other literature type . Article . 2020

A rapid ammonium fluoride method to determine the oxygen isotope ratio of available phosphorus in tropical soils

Verena Pfahler; Verena Pfahler; Andrew C. Smith; Aleksandra W. Bielnicka; Benjamin L. Turner; S. J. Granger; Martin S. A. Blackwell;
Open Access
  • Published: 21 Feb 2020
  • Publisher: Wiley
  • Country: United Kingdom
Abstract
RATIONALE The isotopic composition of oxygen bound to phosphorus (δ18 OP value) offers an opportunity to gain insight into P cycling mechanisms. However, there is little information for tropical forest soils, which presents a challenge for δ18 OP measurements due to low available P concentrations. Here we report the use of a rapid ammonium fluoride extraction method (Bray-1) as an alternative to the widely used anion-exchange membrane (AEM) method for quantification of δ18 OP values of available P in tropical forest soils. METHODS We compared P concentrations and δ18 OP values of available and microbial P determined by AEM and Bray-1 extraction for a series of t...
Subjects
free text keywords: Organic Chemistry, Analytical Chemistry, Spectroscopy, Low P availability, Oxygen isotope ratio, Panama, Tropical forest soils, Research Article, Research Articles, Cycling, Soil water, Isotope analysis, Isotope, Phosphorus, chemistry.chemical_element, chemistry, Ammonium fluoride, chemistry.chemical_compound, Fumigation, Environmental chemistry, Oxygen isotope ratio cycle
38 references, page 1 of 3

1 Vitousek P. Nutrient cycling and nutrient use efficiency. Am Nat. 1982;119(4):553‐572. 10.1086/283931 [OpenAIRE] [DOI]

2 Reed SC, Yang X, Thornton PE. Incorporating phosphorus cycling into global modeling efforts: A worthwhile, tractable endeavor. New Phytol. 2015;208(2):324‐329. 10.1111/nph.13521 26115197 [OpenAIRE] [PubMed] [DOI]

3 Helfenstein J, Tamburini F, von Sperber C, et al. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nat Commun. 2018;9(1):3226‐3229. 10.1038/s41467-018-05731-2 30104647 [OpenAIRE] [PubMed] [DOI]

4 Pistocchi C, Tamburini F, Gruau G, Ferhi A, Trevisan D, Dorioz J‐M. Tracing the sources and cycling of phosphorus in river sediments using oxygen isotopes: Methodological adaptations and first results from a case study in France. Water Res. 2017;111:346‐356. 10.1016/j.watres.2016.12.038 28107748 [OpenAIRE] [PubMed] [DOI]

5 Pfahler V, Tamburini F, Bernasconi SM, Frossard E. A dual isotopic approach using radioactive phosphorus and the isotopic composition of oxygen associated to phosphorus to understand plant reaction to a change in P nutrition. Plant Methods. 2017;13(1):75. 10.1186/s13007-017-0227-x [OpenAIRE] [DOI]

6 Gross A, Goren T, Pio C, et al. Variability in sources and concentrations of Saharan dust phosphorus over the Atlantic Ocean. Environ Sci Technol Lett. 2015;2(2):31‐37. 10.1021/ez500399z [OpenAIRE] [DOI]

7 Tamburini F, Pfahler V, von Sperber C, Frossard E, Bernasconi SM. Oxygen isotopes for unraveling phosphorus transformations in the soil–plant system: A review. Soil Sci Soc Am J. 2014;78(1):38‐46. 10.2136/sssaj2013.05.0186dgs [OpenAIRE] [DOI]

8 Blake RE, O'Neil JR, Garcia GA. Effects of microbial activity on the delta 18O of dissolved inorganic phosphate and textural features of synthetic apatites. Am Mineral. 1998;83(11–12 Part 2):1516‐1531. 10.2138/am-1998-11-1240 [OpenAIRE] [DOI]

9 Blake RE. Biogeochemical cycling of phosphorus: Insights from oxygen isotope effects of phosphoenzymes. Am J Sci. 2005;305(6–8):596‐620. 10.2475/ajs.305.6-8.596 [OpenAIRE] [DOI]

10 Gross A, Nishri A, Angert A. Use of phosphate oxygen isotopes for identifying atmospheric‐P sources: A case study at Lake Kinneret. Environ Sci Technol. 2013;47(6):2721‐2727. 10.1021/es305306k 23413957 [OpenAIRE] [PubMed] [DOI]

11 Elsbury KE, Paytan A, Ostrom NE, et al. Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in Lake Erie. Environ Sci Technol. 2009;43(9):3108‐3114. 10.1021/es8034126 19534121 [OpenAIRE] [PubMed] [DOI]

12 Gross A, Turner BL, Wright SJ, et al. Oxygen isotope ratios of plant available phosphate in lowland tropical forest soils. Soil Biol Biochem. 2015;88(0):354‐361. 10.1016/j.soilbio.2015.06.015 [OpenAIRE] [DOI]

13 Weiner T, Mazeh S, Tamburini F, et al. A method for analyzing the δ18 O of resin‐extractable soil inorganic phosphate. Rapid Commun Mass Spectrom. 2011;25(5):624‐628. 10.1002/rcm.4899 21290449 [OpenAIRE] [PubMed] [DOI]

14 Turner BL, Brenes‐Arguedas T, Condit R. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature. 2018;555(7696):367‐370. 10.1038/nature25789 29513656 [OpenAIRE] [PubMed] [DOI]

15 Tamburini F, Pfahler V, Bünemann EK, Guelland K, Bernasconi SM, Frossard E. Oxygen isotopes unravel the role of microorganisms in phosphate cycling in soils. Environ Sci Technol. 2012;46(11):5956‐5962. 10.1021/es300311h 22545923 [OpenAIRE] [PubMed] [DOI]

38 references, page 1 of 3
Any information missing or wrong?Report an Issue