A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus

Other literature type, Article English OPEN
Hajduk, Joanna ; Klupczynska, Agnieszka ; Dereziński, Paweł ; Matysiak, Jan ; Kokot, Piotr ; Nowak, Dorota M. ; Gajęcka, Marzena ; Nowak-Markwitz, Ewa ; Kokot, Zenon J. (2015)
  • Publisher: MDPI
  • Journal: International Journal of Molecular Sciences, volume 16, issue 12, pages 30,034-30,045 (issn: 1422-0067, eissn: 1422-0067)
  • Related identifiers: pmc: PMC4691080, doi: 10.3390/ijms161226133
  • Subject: Chemistry | chemometric analysis | combined metabolomic and proteomic approach | QD1-999 | mass spectrometry | gestational diabetes mellitus | Biology (General) | Article | QH301-705.5

The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18) and a matched control group (n = 13). The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, l-citrulline, l-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44%) and specificity (84.62%), as well as the total group membership classification value (90.32%) calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases.
  • References (15)
    15 references, page 1 of 2

    N. Engl. J. Med. 2009, 361, 1339-1348. [CrossRef] [PubMed] 10. Lain, K.Y.; Daftary, A.R.; Ness, R.B.; Roberts, J.M. First trimester adipocytokine concentrations and risk 11. Thadhani, R.; Powe, C.E.; Tjoa, M.L.; Khankin, E.; Ye, J.; Ecker, J.; Schneyer, A.; Karumanchi, S.A.

    First-trimester follistatin-like-3 levels in pregnancies complicated by subsequent gestational diabetes mellitus. Diabetes Care 2010, 33, 664-669. [CrossRef] [PubMed] 12. Thadhani, R.; Wolf, M.; Hsu-Blatman, K.; Sandler, L.; Nathan, D.; Ecker, J.L. First-trimester sex hormone binding globulin and subsequent gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2003, 189, 171-176.

    [CrossRef] [PubMed] 13. Spencer, K.; Yu, C.K.H.; Rembouskos, G.; Bindra, R.; Nicolaides, K.H. First trimester sex hormone-binding globulin and subsequent development of preeclampsia or other adverse pregnancy outcomes.

    Hypertens. Pregnancy 2005, 24, 303-311. [CrossRef] [PubMed] 14. Nanda, S.; Savvidou, M.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat. Diagn. 2011, 31, 135-141. [CrossRef] [PubMed] 15. Kim, S.M.; Park, J.S.; Norwitz, E.R.; Lee, S.M.; Kim, B.J.; Park, C.W.; Jun, J.K.; Kim, C.W.; Syn, H.C.

    Identification of proteomic biomarkers in maternal plasma in the early second trimester that predict the subsequent development of gestational diabetes. Reprod. Sci. 2012, 19, 202-209. [CrossRef] [PubMed] 16. Liu, B.; Xu, Y.; Voss, C.; Qiu, F.H.; Zhao, M.Z.; Liu, Y.D.; Nie, J.; Wang, Z.L. Altered protein expression in gestational diabetes mellitus placentas provides insight into insulin resistance and coagulation/fibrinolysis pathways. PLoS ONE 2012, 7, e44701. [CrossRef] [PubMed] 17. Marroqui, L.; Alonso-Magdalena, P.; Merino, B.; Fuentes, E.; Nadal, A.; Quesada, I. Nutrient regulation of glucagon secretion: Involvement in metabolism and diabetes. Nutr. Res. Rev. 2014, 27, 48-62. [CrossRef] [PubMed] 18. Newsholme, P.; Cruzat, V.; Arfuso, F.; Keane, K. Nutrient regulation of insulin secretion and action.

    J. Endocrinol. 2014, 221, R105-R120. [CrossRef] [PubMed] 19. Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448-453.

    [CrossRef] [PubMed] 20. Cetin, I.; de Santis, M.S.; Taricco, E.; Radaelli, T.; Teng, C.; Ronzoni, S.; Spada, E.; Milani, S.; Pardi, G.

    Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2005, 192, 610-617. [CrossRef] [PubMed] 21. Kalkhoff, R.K.; Kandaraki, E.; Morrow, P.G.; Mitchell, T.H.; Kelber, S.; Borkowf, H.I. Relationship between neonatal birth-weight and maternal plasma amino-acid profiles in lean and obese nondiabetic women and in type-I diabetic pregnant-women. Metabolism 1988, 37, 234-239. [CrossRef] 22. Mochida, T.; Tanaka, T.; Shiraki, Y.; Tajiri, H.; Matsumoto, S.; Shimbo, K.; Ando, T.; Nakamura, K.; Okamoto, M.; Endo, F. Time-dependent changes in the plasma amino acid concentration in diabetes mellitus. Mol. Genet. Metab. 2011, 103, 406-409. [CrossRef] [PubMed] 23. Friedrich, N. Metabolomics in diabetes research. J. Endocrinol. 2012, 215, 29-42. [CrossRef] [PubMed] 24. De Luca, G.; Calpona, P.R.; Caponetti, A.; Macaione, V.; di Benedetto, A.; Cucinotta, D.; di Giorgio, R.M.

    Preliminary report-Amino acid profile in platelets of diabetic patients. Metabolism 2001, 50, 739-741.

    [CrossRef] [PubMed] 25. Murri, M.; Insenser, M.; Bernal-Lopez, M.R.; Perez-Martinez, P.; Escobar-Morreale, H.F.; Tinahones, F.J.

  • Related Research Results (2)
  • Metrics
    No metrics available
Share - Bookmark