publication . Article . Preprint . 2015

On The Viability Of Minimal Neutrinophilic Two-higgs-doublet Models

Machado, P. A. N.; Perez, Y. F.; Sumensari, O.; Tabrizi, Z.; Funchal, R. Z.; 0000-0002-0592-7425;
Open Access English
  • Published: 01 Dec 2015
  • Publisher: Springer/SISSA
We study the constraints that electroweak precision data can impose, after the discovery of the Higgs boson by the LHC, on neutrinophilic two-Higgs-doublet models which comprise one extra $SU(2)\times U(1)$ doublet and a new symmetry, namely a spontaneously broken $\mathbb{Z}_2$ or a softly broken global $U(1)$. In these models the extra Higgs doublet, via its very small vacuum expectation value, is the sole responsible for neutrino masses. We find that the model with a $\mathbb{Z}_2$ symmetry is basically ruled out by electroweak precision data, even if the model is slightly extended to include extra right-handed neutrinos, due to the presence of a very light s...
arXiv: High Energy Physics::Phenomenology
free text keywords: Beyond Standard Model, Higgs Physics, Neutrino Physics, Física, Modelo padrão (Física nuclear), Desintegração beta, Massa (Física), Standard model (Nuclear physics), Beta decay, Mass (Physics), Seesaw, Nonconservation, Higgs doublet model, High Energy Physics - Phenomenology, Nuclear and High Energy Physics, Physics, Higgs boson, Standard Model, Particle physics, Seesaw molecular geometry
Funded by
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE

[4] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological [5] P. Minkowski, [8] T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Conf. Proc. C 7902131 (1979) [23] S. Zhou, Comment on astrophysical consequences of a neutrinophilic 2HDM, Phys. Rev. D [24] S. Kanemura, Y. Okada, E. Senaha and C.-P. Yuan, Higgs coupling constants as a probe of new physics, Phys. Rev. D 70 (2004) 115002 [hep-ph/0408364] [INSPIRE].

[25] F. Wang, W. Wang and J.M. Yang, Split two-Higgs-doublet model and neutrino condensation, Europhys. Lett. 76 (2006) 388 [hep-ph/0601018] [INSPIRE].

[26] T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387 [arXiv:1507.06779] [INSPIRE].

[42] O. Seto, Large invisible decay of a Higgs boson to neutrinos, Phys. Rev. D 92 (2015) 073005 [43] A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi and M. Spira, Standard Model Higgs-Boson Branching Ratios with Uncertainties, Eur. Phys. J. C 71 (2011) 1753 [arXiv:1107.5909] [44] L.G. Almeida, E. Bertuzzo, P.A.N. Machado and R.Z. Funchal, Does H ! vanilla New Physics?, JHEP 11 (2012) 085 [arXiv:1207.5254] [INSPIRE]. [46] S.M. Davidson and H.E. Logan, LHC phenomenology of a two-Higgs-doublet neutrino mass model, Phys. Rev. D 82 (2010) 115031 [arXiv:1009.4413] [INSPIRE]. [49] U. Maitra, B. Mukhopadhyaya, S. Nandi, S.K. Rai and A. Shivaji, Searching for an elusive [51] A. Broggio, E.J. Chun, M. Passera, K.M. Patel and S.K. Vempati, Limiting Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE]. [54] E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Improving

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue