Dynamics of shock waves in elastic-plastic solids

Preprint, Article English OPEN
Gavrilyuk S.; Favrie N.;
  • Publisher: EDP Sciences
  • Journal: ESAIM: Proceedings and Surveys (issn: 1270-900X)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1051/proc/201133005
  • Subject: elastic-plastic solids | Mathematics | [SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the solides [physics.class-ph] | [PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Mechanics of the solides [physics.class-ph] | Godunov type methods | [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] | large deformations | Applied mathematics. Quantitative methods | [ PHYS.MECA.SOLID ] Physics [physics]/Mechanics [physics]/Mechanics of the solides [physics.class-ph] | T57-57.97 | [ SPI.MECA.MEFL ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] | [ PHYS.MECA.MEFL ] Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] | [ SPI.MECA.SOLID ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the solides [physics.class-ph] | [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] | QA1-939

Submitted in ESAIM Procedings; The Maxwell type elastic-plastic solids are characterized by decaying the absolute values of the principal components of the deviatoric part of the stress tensor during the plastic relaxation step. We propose a mathematical formulation of ... View more
  • References (16)
    16 references, page 1 of 2

    Barton, P.T., Drikakis, D. and Romenski, E. I. (2010) An Eulerian scheme for large elastoplastic deformations in solids, Int. J. Numer.Meth. Engng, 81, 453-484.

    Bertram A. (2005), Elasticity and Plasticity of Large Deformations. Springer-Verlag Favrie and Gavrilyuk (2010) Mathematical and numerical model for nonlinear viscoplasticity, Philosophical Transactions of the Royal Society A -Mathematical Physical and Engineering Sciences (submitted).

    Favrie, N., Gavrilyuk, S.L. and Saurel, R. (2009) Diffuse solid-fluid interface model in cases of extreme deformations, Journal of Computational Physics, 228, 6037-6077.

    Gavrilyuk, S.L., Favrie, N. and Saurel, R. (2008) Modeling wave dynamics of compressible elastic materials. Journal of Computational Physics, 227, 2941-2969.

    Germain, P. and Lee, E. H. (1973) On shock waves in elastic-plastic solids, J. Mech. Phys. Solids, 21, p. 359-382.

    Godunov, S.K., Denisenko, V.V., Kozin, N.S. and Kuz'min, N.K. (1975) Use of relaxation viscoelastic model in calculating uniaxial homogeneous strains and refining the interpolation equations for Maxwellian viscosity, J. Applied Mechanics and Technical Physics, 16, N 5, 811-814.

    Godunov, S.K. (1978) Elements of Continuum Mechanics, Nauka, Moscow (in Russian).

    Godunov, S.K. and Romenskii, E.I. (2003) Elements of Continuum Mechanics and Conservation Laws, Kluwer Academic Plenum Publishers, NY.

    Godunov, S. K. and Peshkov, I. M. (2010) Thermodynamically compatible nonlinear elastoplastic model of Maxwell's continua, Computational Mathematics and Mathematical Physics (to appear).

    Gouin, H. and Debieve, J.F. (1986) Variational principle involving the stress tensor in elastodynamics, Int. J. Engng. Sci., 24, N 7, 1057-1066.

  • Metrics
Share - Bookmark