The Galerkin finite element method for a multi-term time-fractional diffusion equation

Article, Preprint English OPEN
Jin, Bangti; Lazarov, Raytcho; Liu, Yikan; Zhou, Zhi;
(2015)
  • Publisher: Elsevier BV
  • Journal: Journal of Computational Physics,volume 281,pages825-843 (issn: 0021-9991)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1016/j.jcp.2014.10.051
  • Subject: Computer Science Applications | multi-term time-fractional diffusion equation, finite element method, error estimate, semidiscrete scheme, Caputo derivative | Physics and Astronomy (miscellaneous) | Mathematics - Numerical Analysis

We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous pie... View more
  • References (38)
    38 references, page 1 of 4

    [1] E.E. Adams, L.W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis, Water Res. Research 28 (12) (1992) 3293-3307.

    [2] R. Adams, J. Fournier, Sobolev Spaces, Elsevier/Academic Press, Amsterdam, 2003.

    [3] E. Bazhlekova, Properties of the fundamental and the impulse-response solutions of multi-term fractional differential equations, in: Complex Analysis and Applications '13, Sofia, 31 Oct.-2 Nov. 2013, 2013, pp. 55-64.

    [4] H. Brunner, L. Ling, M. Yamamoto, Numerical simulations of 2D fractional subdiffusion problems, J. Comput. Phys. 229 (18) (2010) 6613-6622.

    [5] E. Casas, C. Clason, K. Kunisch, Parabolic control problems in measure spaces with sparse solutions, SIAM J. Control Optim. 51 (1) (2013) 28-63.

    [6] A.M.A. El-Sayed, I.L. El-Kalla, E.A.A. Ziada, Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations, Appl. Numer. Math. 60 (8) (2010) 788-797.

    [7] Z.-J. Fu, W. Chen, H.-T. Yang, Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys. 235 (2013) 52-66.

    [8] S.B. Hadid, Y.F. Luchko, An operational method for solving fractional differential equations of an arbitrary real order, Panamer. Math. J. 6 (1) (1996) 57-73.

    [9] H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain, J. Math. Anal. Appl. 389 (2) (2012) 1117-1127.

    [10] B. Jin, R. Lazarov, J. Pasciak, Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion, IMA J. Numer. Anal. (2013), in press.

  • Metrics