A Trigonometrically Fitted Block Method for Solving Oscillatory Second-Order Initial Value Problems and Hamiltonian Systems

Other literature type, Article English OPEN
Ngwane, F. F.; Jator, S. N.;

In this paper, we present a block hybrid trigonometrically fitted Runge-Kutta-Nyström method (BHTRKNM), whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including Hamiltonian sys... View more
  • References (41)
    41 references, page 1 of 5

    Lambert, J. D.. Numerical Methods for Ordinary Differential Systems . 1991

    Lambert, J. D.. Computational Methods in Ordinary Differential Equations . 1973

    Hairer, E., Wanner, G.. Solving Ordinary Differential Equations II . 1996; 14

    Hairer, E.. A one-step method of order 10 for y''=fx,y. IMA Journal of Numerical Analysis . 1982; 2: 83-94

    Brugnano, L., Trigiante, D.. Solving ODEs By Multistep Initial and Boundary Value Methods . 1998

    Brugnano, L., Trigiante, D., Trigiante, D.. Block implicit methods for ODEs. Recent Trends in Numerical Analysis . 2001: 81-105

    Hairer, E., Nørsett, S. P., Wanner, G.. Solving ordinary differential equations I . 1993; 8

    Simos, T. E.. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Computer Physics Communications . 1998; 115 (1): 1-8

    Lambert, J. D., Watson, I. A.. Symmetric multistep methods for periodic initial value problems. Journal of the Institute of Mathematics and Its Applications . 1976; 18 (2): 189-202

    Twizell, E. H., Khaliq, A. Q.. Multiderivative methods for periodic initial value problems. SIAM Journal on Numerical Analysis . 1984; 21 (1): 111-122

  • Metrics
Share - Bookmark