publication . Preprint . Article . Other literature type . 2017

Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology

William H. Kinney; Gabriela Barenboim; Wan-Il Park;
Open Access English
  • Published: 07 Sep 2017
We show that, if they exist, lepton number asymmetries ($L_\alpha$) of neutrino flavors should be distinguished from the ones ($L_i$) of mass eigenstates, since Big Bang Nucleosynthesis (BBN) bounds on the flavor eigenstates cannot be directly applied to the mass eigenstates. Similarly, Cosmic Microwave Background (CMB) constraints on mass eigenstates do not directly constrain flavor asymmetries. Due to the difference of mass and flavor eigenstates, the cosmological constraint on the asymmetries of neutrino flavors can be much stronger than conventional expectation, but not uniquely determined unless at least the asymmetry of the heaviest neutrino is well constr...
arXiv: High Energy Physics::ExperimentHigh Energy Physics::PhenomenologyHigh Energy Physics::LatticeAstrophysics::Cosmology and Extragalactic Astrophysics
free text keywords: Astrophysics - Cosmology and Nongalactic Astrophysics, High Energy Physics - Phenomenology, Physics and Astronomy (miscellaneous), Engineering (miscellaneous), QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Flavor, Asymmetry, media_common.quotation_subject, media_common, Neutrino, Eigenvalues and eigenvectors, Cosmic microwave background, Astrophysics, Particle physics, Physics, Cosmology, Big Bang nucleosynthesis, Lepton number
Funded by
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
NSF| Physics at the Frontier: Collider and Cosmology
  • Funder: National Science Foundation (NSF)
  • Project Code: 1417317
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
EC| InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
45 references, page 1 of 3

1. B. Bajc, A. Riotto, G. Senjanovic, Phys. Rev. Lett. 81, 1355 (1998). doi:10.1103/PhysRevLett.81.1355. arXiv:hep-ph/9710415

2. J. Liu, G. Segre, Phys. Lett. B 338, 259 (1994). doi:10.1016/ 0370-2693(94)91375-7

3. J. March-Russell, H. Murayama, A. Riotto, JHEP 9911, 015 (1999). doi:10.1088/1126-6708/1999/11/015. arXiv:hep-ph/9908396

4. G. Mangano, G. Miele, S. Pastor, O. Pisanti, S. Sarikas, JCAP 1103, 035 (2011). doi:10.1088/1475-7516/2011/03/035. arXiv:1011.0916 [astro-ph.CO]

5. G. Mangano, G. Miele, S. Pastor, O. Pisanti, S. Sarikas, Phys. Lett. B 708, 1 (2012). doi:10.1016/j.physletb.2012.01.015. arXiv:1110.4335 [hep-ph]

6. G. Barenboim, W.H. Kinney, W.I. Park, arXiv:1609.01584 [hepph]

7. P.A.R. Ade et al. [Planck Collaboration], arXiv:1502.01589 [astroph.CO]

8. G.D. Starkman, D. Stojkovic, Phys. Lett. B 480, 381 (2000). doi:10. 1016/S0370-2693(00)00397-X. arXiv:hep-ph/9909350

9. Q.R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 87, 071301 (2001). doi:10.1103/PhysRevLett.87.071301. arXiv:nucl-ex/0106015

10. Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81, 1562 (1998). doi:10.1103/PhysRevLett.81.1562. arXiv:hep-ex/9807003

11. F.P. An et al. [Daya Bay Collaboration], Phys. Rev. Lett. 108, 171803 (2012). doi:10.1103/PhysRevLett.108.171803. arXiv:1203.1669 [hep-ex]

12. J.K. Ahn et al. [RENO Collaboration], Phys. Rev. Lett. 108, 191802 (2012). doi:10.1103/PhysRevLett.108.191802. arXiv:1204.0626 [hep-ex]

13. K.A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38, 090001 (2014). doi:10.1088/1674-1137/38/9/090001

14. C. Lunardini, A.Y. Smirnov, Phys. Rev. D 64, 073006 (2001). doi:10.1103/PhysRevD.64.073006. arXiv:hep-ph/0012056

15. A.D. Dolgov, S.H. Hansen, S. Pastor, S.T. Petcov, G.G. Raffelt, D.V. Semikoz, Nucl. Phys. B 632, 363 (2002). doi:10.1016/ S0550-3213(02)00274-2. arXiv:hep-ph/0201287

45 references, page 1 of 3
Any information missing or wrong?Report an Issue