Théorie de Perron-Frobenius non linéaire et méthodes numériques max-plus pour la résolution d'équations d'Hamilton-Jacobi

Doctoral thesis English OPEN
Qu , Zheng;
(2013)
  • Publisher: HAL CCSD
  • Subject: Finsler metric | curse of dimensionality | Max-plus basis method | [ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC] | dynamic programming | nonexpansive mapping | [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]

Dynamic programming is one of the main approaches to solve optimal control problems. It reduces the latter problems to Hamilton-Jacobi partial differential equations (PDE). Several techniques have been proposed in the literature to solve these PDE. We mention, for examp... View more
  • References (37)
    37 references, page 1 of 4

    A., 38:716-719, 1952.

    Richard Bellman. Dynamic programming. Princeton University Press, Princeton, N. J., 1957.

    S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, Cambridge, 2004.

    Dimitri P. Bertsekas and Huizhen Yu. Q-learning and enhanced policy iteration in discounted dynamic programming. Math. Oper. Res., 37(1):66-94, 2012.

    O. Bokanowski and H. Zidani. Anti-dissipative schemes for advection and application to Hamilton-Jacobi-Bellman equations. J. Sci. Compt, 30(1):1-33, 2007.

    Simone Cacace, Emiliano Cristiani, Maurizio Falcone, and Athena Picarelli. A patchy dynamic programming scheme for a class of Hamilton-Jacobi-Bellman equations. SIAM J. Sci. Comput., 34(5):A2625-A2649, 2012.

    I. Capuzzo Dolcetta. On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming. Appl. Math. Optim., 10(4):367-377, 1983.

    E. Carlini, M. Falcone, and R. Ferretti. An efficient algorithm for Hamilton-Jacobi equations in high dimension. Comput. Vis. Sci., 7(1):15-29, 2004.

    F. Camilli, M. Falcone, P. Lanucara, and A. Seghini. A domain decomposition method for Bellman equations. In Domain decomposition methods in scientific and engineering computing (University Park, PA, 1993), volume 180 of Contemp. Math., pages 477- 483. Amer. Math. Soc., Providence, RI, 1994.

    G. Cohen, S. Gaubert, and J-P. Quadrat. Duality and separation theorem in idempotent semimodules. Linear Algebra and Appl., 379:395-422, 2004.

  • Metrics
Share - Bookmark