publication . Article . Other literature type . Preprint . 2019

Phenomenology of self-interacting dark matter in a matter-dominated universe

Tommi Tenkanen; Tommi Tenkanen; Catarina Cosme; Nicolás Bernal;
Open Access
  • Published: 31 Jan 2019 Journal: The European Physical Journal C, volume 79 (issn: 1434-6044, eissn: 1434-6052, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
Comment: 19 pages, 8 figures. v2: Method for solving Boltzmann equations clarified, plots updated, discussion and references added. The main results remain unchanged. v3: Minor modifications, matches the version accepted for publication
free text keywords: Physics and Astronomy (miscellaneous), Engineering (miscellaneous), Astrophysics, QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, High Energy Physics - Phenomenology, Astrophysics - Cosmology and Nongalactic Astrophysics, Dark matter, Higgs boson, Universe, media_common.quotation_subject, media_common, Standard Model, Thermal equilibrium, Physics, Hidden sector, Self-interacting dark matter, Strongly interacting massive particle, Particle physics
Funded by
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
EC| InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
RCUK| Astronomy Research at Queen Mary 2012-2015
  • Funder: Research Council UK (RCUK)
  • Project Code: ST/J001546/1
  • Funding stream: STFC
136 references, page 1 of 10

1. L. Bergström, Nonbaryonic dark matter: observational evidence and detection methods. Rep. Prog. Phys. 63, 793 (2000). arXiv:hep-ph/0002126

2. Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters. arXiv:1807.06209

3. G. Bertone, D. Hooper, A history of dark matter. Rev. Mod. Phys. (2016). arXiv:1605.04909

4. J. de Swart, G. Bertone, J. van Dongen, How dark matter came to matter. Nat. Astron. 1, 0059 (2017). arXiv:1703.00013

5. G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo, F .S. Queiroz, The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 78(3), 203 (2018). arXiv:1703.07364

6. J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter. Phys. Rev. Lett. 88, 091304 (2002). arXiv:hep-ph/0106249

7. K.-Y. Choi, L. Roszkowski, E-WIMPs. AIP Conf. Proc. 805, 30- 36 (2006). arXiv:hep-ph/0511003. [30 (2005)]

8. A. Kusenko, Sterile neutrinos, dark matter, and the pulsar velocities in models with a Higgs singlet. Phys. Rev. Lett. 97, 241301 (2006). arXiv:hep-ph/0609081 [OpenAIRE]

9. K. Petraki, A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector. Phys. Rev. D 77, 065014 (2008). arXiv:0711.4646

10. L.J. Hall, K. Jedamzik, J. March-Russell, S.M. West, Freezein production of FIMP dark matter. JHEP 1003, 080 (2010). arXiv:0911.1120

11. N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, V. Vaskonen, The dawn of FIMP dark matter: a review of models and constraints. Int. J. Mod. Phys. A 32(27), 1730023 (2017). arXiv:1706.07442

12. M. Kamionkowski, M.S. Turner, Thermal relics: do we know their abundances? Phys. Rev. D 42, 3310-3320 (1990) [OpenAIRE]

13. S. Davidson, M. Losada, A. Riotto, A new perspective on baryogenesis. Phys. Rev. Lett. 84, 4284-4287 (2000). arXiv:hep-ph/0001301

14. G.F. Giudice, E.W. Kolb, A. Riotto, Largest temperature of the radiation era and its cosmological implications. Phys. Rev. D 64, 023508 (2001). arXiv:hep-ph/0005123

15. R. Allahverdi, B. Dutta, K. Sinha, Baryogenesis and late-decaying moduli. Phys. Rev. D 82, 035004 (2010). arXiv:1005.2804

136 references, page 1 of 10
Any information missing or wrong?Report an Issue