publication . Preprint . Article . 2016

Caustics for spherical waves

Hayato Motohashi; Claudia de Rham;
Open Access English
  • Published: 29 Nov 2016
  • Country: United Kingdom
We study the development of caustics in shift-symmetric scalar field theories by focusing on simple waves with an $SO(p)$-symmetry in an arbitrary number of space dimensions. We show that the pure Galileon, the DBI-Galileon, and the extreme-relativistic Galileon naturally emerge as the unique set of caustic-free theories, highlighting a link between the caustic-free condition for simple $SO(p)$-waves and the existence of either a global Galilean symmetry or a global (extreme-)relativistic Galilean symmetry.
arXiv: Astrophysics::High Energy Astrophysical Phenomena
free text keywords: High Energy Physics - Theory, Astrophysics - Cosmology and Nongalactic Astrophysics, General Relativity and Quantum Cosmology, Science & Technology, Physical Sciences, Astronomy & Astrophysics, Physics, Particles & Fields, Physics, FIELD-EQUATIONS, GRAVITY, SINGULARITY, SYSTEMS, TENSOR, SCALAR, SPACE, hep-th, astro-ph.CO, gr-qc, Born–Infeld model, Scalar field, Caustic (optics), Scalar (physics), Galilean, Classical mechanics, Spherical wave
Related Organizations
Funded by
NSF| The Physics Frontier Center of the Kavli Institute for Cosmological Physics
  • Funder: National Science Foundation (NSF)
  • Project Code: 0551142
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
NSF| Center for Cosmological Physics
  • Funder: National Science Foundation (NSF)
  • Project Code: 0114422
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
EC| InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
56 references, page 1 of 4

[1] E. Babichev, V. Mukhanov, and A. Vikman, k-Essence, superluminal propagation, causality and emergent geometry, JHEP 02 (2008) 101, [arXiv:0708.0561], [doi:10.1088/1126-6708/2008/02/101]. [OpenAIRE]

[2] E. Babichev, Formation of caustics in k-essence and Horndeski theory, JHEP 04 (2016) 129, [arXiv:1602.00735], [doi:10.1007/JHEP04(2016)129]. [OpenAIRE]

[3] S. Mukohyama, R. Namba, and Y. Watanabe, Is the DBI scalar field as fragile as other k-essence fields?, Phys. Rev. D94 (2016) 023514, [arXiv:1605.06418], [doi:10.1103/PhysRevD.94.023514]. [OpenAIRE]

[4] K. Horie, H. Miyazaki, and I. Tsutsui, Quantum caustics for systems with quadratic Lagrangians in multidimensions, Annals Phys. 279 (2000) 104-125, [arXiv:hep-th/9905189], [doi:10.1006/aphy.1999.5971].

[5] J. Ehlers and E. T. Newman, The theory of caustics and wavefront singularities with physical applications, J. Math. Phys. 41 (2000) 3344-3378, [arXiv:gr-qc/9906065], [doi:10.1063/1.533316].

[6] G. N. Felder, L. Kofman, and A. Starobinsky, Caustics in tachyon matter and other Born-Infeld scalars, JHEP 09 (2002) 026, [arXiv:hep-th/0208019], [doi:10.1088/1126-6708/2002/09/026]. [OpenAIRE]

[7] N. Barnaby, Caustic formation in tachyon effective field theories, JHEP 07 (2004) 025, [arXiv:hep-th/0406120], [doi:10.1088/1126-6708/2004/07/025]. [OpenAIRE]

[8] A. I. Harte and T. D. Drivas, Caustics and wave propagation in curved spacetimes, Phys. Rev. D85 (2012) 124039, [arXiv:1202.0540], [doi:10.1103/PhysRevD.85.124039]. [OpenAIRE]

[9] P. D. Lax, The Initial Value Problem for Nonlinear Hyperbolic Equations in Two Independent Variables, Ann. Math. Stud. 33 (1954) 211-229.

[10] P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10 (1957), no. 4 537-566, [doi:10.1002/cpa.3160100406]. [OpenAIRE]

[11] A. Jeffrey and T. Tanuti, Non-Linear Wave Propagation. Elsevier, 1964.

[12] S. Deser, J. G. McCarthy, and O. Sarioglu, 'Good propagation' constraints on dual invariant actions in electrodynamics and on massless fields, Class. Quant. Grav. 16 (1999) 841-847, [arXiv:hep-th/9809153], [doi:10.1088/0264-9381/16/3/015]. [OpenAIRE]

[13] C. R. Contaldi, T. Wiseman, and B. Withers, TeVeS gets caught on caustics, Phys. Rev. D78 (2008) 044034, [arXiv:0802.1215], [doi:10.1103/PhysRevD.78.044034].

[14] M. R. Setare and D. Momeni, Caustic singularity in Horava-Lifshitz gravity, Int. J. Theor. Phys. 51 (2012) 198-205, [arXiv:1009.0918], [doi:10.1007/s10773-011-0894-8].

[15] J. D. Bekenstein, Relativistic gravitation theory for the MOND paradigm, Phys. Rev. D70 (2004) 083509, [arXiv:astro-ph/0403694], [doi:10.1103/PhysRevD.70.083509, 10.1103/PhysRevD.71.069901]. [Erratum: Phys. Rev.D71,069901(2005)]. [OpenAIRE]

56 references, page 1 of 4
Any information missing or wrong?Report an Issue