Error Bounds for Augmented Truncations of Discrete-Time Block-Monotone Markov Chains under Geometric Drift Conditions

Preprint, Other literature type English OPEN
Masuyama, Hiroyuki;
  • Publisher: Applied Probability Trust
  • Journal: issn: 0001-8678
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1239/aap/1427814582
  • Subject: geometric drift condition | Augmented truncation | GI/M/1-type Markov chain | blockwise dominance | 60K25 | level-dependent QBD | M/G/1-type Markov chain | GI/G/1-type Markov chain | Mathematics - Probability | block monotonicity | pathwise ordering | 60J10

In this paper we study the augmented truncation of discrete-time block-monotone Markov chains under geometric drift conditions. We first present a bound for the total variation distance between the stationary distributions of an original Markov chain and its au... View more
  • References (24)
    24 references, page 1 of 3

    [1] ANDREW, A. L., CHU, K.-W. E. AND LANCASTER, P. (1993). Derivatives of eigenvalues and eigenvectors of matrix functions. SIAM J. Matrix Anal. Appl. 14, 903-926.

    [2] BAUMANN, H. AND SANDMANN, W. (2010). Numerical solution of level dependent quasi-birth-and-death processes. Procedia Comput. Sci. 1, 1561-1569.

    [3] BRE´ MAUD, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York.

    [4] BRIGHT, L. AND TAYLOR, P. G. (1995). Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes. Stoch. Models 11, 497-525.

    [5] CHUNG, K. L. (1967). Markov Chains: With Stationary Transition Probabilities, 2nd edn. Springer, Berlin.

    [6] DALEY, D. J. (1968). Stochastically monotone Markov chains. Z. Wahrscheinlichkeitstheorie verw. Geb. 10, 305-317.

    [7] GIBSON, D. AND SENETA, E. (1987). Monotone infinite stochastic matrices and their augmented truncations. Stoch. Proc. Appl. 24, 287-292.

    [8] HE, Q.-M. (2014). Fundamentals of Matrix-Analytic Methods, Springer, New York.

    [9] HORN, R. A. AND JOHNSON, C. R. (1990). Matrix Analysis, 1st Paperback edn. Cambridge University Press, New York.

    [10] KEILSON, J. AND KESTER, A. (1977). Monotone matrices and monotone Markov processes. Stoch. Proc. Appl. 5, 231-241.

  • Metrics
Share - Bookmark