19 references, page 1 of 2 [1] G. Aletti, G. Naldi, and G. Toscani. First-order continuous models of opinion formation. SIAM J. Appl. Math., 67(3):837-853 (electronic), 2007.

[2] E. Ben-Naim, P. L. Krapivsky, and S. Redner. Bifurcation and patterns in compromise processes. Phys. D, 183(3-4):190-204, 2003.

[3] E. Ben-Naim, P. L. Krapivsky, F. Vazquez, and S. Redner. Unity and discord in opinion dynamics. Phys. A, 330(1-2):99-106, 2003. Randomness and complexity (Eilat, 2003).

[4] G.A. Bird. Molecular gas dynamics and the direct simulation of gas flows, volume 42 of Oxford Engineering Science Series. The Clarendon Press Oxford University Press, New York, 1995. Corrected reprint of the 1994 original.

[5] L. Boudin, R. Monaco, and F. Salvarani. Kinetic model for multidimensional opinion formation. Phys. Rev. E (3), 81(3):036109, 9, 2010.

[6] L. Boudin and F. Salvarani. A kinetic approach to the study of opinion formation. M2AN Math. Model. Numer. Anal., 43(3):507-522, 2009.

[7] L. Boudin and F. Salvarani. The quasi-invariant limit for a kinetic model of sociological collective behavior. Kinet. Relat. Models, 2(3):433-449, 2009.

[8] L. Boudin and F. Salvarani. Modelling opinion formation by means of kinetic equations. In Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol., pages 245-270. Birkh¨auser Boston Inc., Boston, MA, 2010.

[9] V. Comincioli, L. Della Croce, and G. Toscani. A Boltzmann-like equation for choice formation. Kinet. Relat. Models, 2(1):135-149, 2009.

[10] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch. Mixing beliefs among interacting agents. Adv. Complex Systems, 3:87-98, 2000.