Analyse écophysiologique et modélisation de l’interaction génotype x environnement x itinéraire technique chez le cotonnier (Gossypium hirsutum L.) au Cameroun pour la conception d'idéotypes

Doctoral thesis English OPEN
Loison , Romain;
(2015)
  • Publisher: HAL CCSD
  • Subject: modeling | [ SDV.BV.AP ] Life Sciences [q-bio]/Vegetal Biology/Plant breeding | [ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS] | Cameroon | Ideotype | modelling | idéotype | DSSAT CROPGRO-Cotton | [SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT] | CROPGRO-Cotton | Cameroun | drought adaptation | modélisation | sélection | [ SDV.SA ] Life Sciences [q-bio]/Agricultural sciences | [ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/Agronomy | Gossypium hirsutum | breeding

Cotton lint is the first natural fiber used in the world. Cotton provides income to more than 10 million persons in West and Central Africa. In Cameroon, it is produced under rainfed conditions and water shortage is the major abiotic factor limiting yield and lint quali... View more
  • References (178)
    178 references, page 1 of 18

    Ackerson, R.C., Krieg, D.R., Haring, C.L., Chang, N., 1977. Effects of Plant Water Status on Stomatal Activity, Photosynthesis, and Nitrate Reductase Activity of Field Grown Cotton1. Crop Sci. 17, 81. doi:10.2135/cropsci1977.0011183X0017 00010023x

    Acuna, T.L.B., Wade, L.J., 2013. Use of genotype x environment interactions to understand rooting depth and the ability of wheat to penetrate hard soils. Ann. Bot. 112, 359-368. doi:10.1093/aob/mcs251

    Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspirationGuidelines for computing crop water requirements-FAO Irrigation and Drainage Pap. 56. Food and Agriculture Organization of the United Nations, Rome, Italy. Available online at http://www.fao. org/docrep/x0490e/x0490e00.HTM (verified 3 March 2014).

    Andrianasolo, F.N., Casadebaig, P., Maza, E., Champolivier, L., Maury, P., Debaeke, P., 2014. Prediction of sunflower grain oil concentration as a function of variety, crop management and environment using statistical models. Eur. J. Agron. 54, 84-96. doi:10.1016/j.eja.2013.12.002

    Badu-Apraku, B., Abamu, F.J., Menkir, A., Fakorede, M.A.B., Obeng-Antwi, K., The, C., 2003. Genotype by environment interactions in the regional early maize variety trials in west and central Africa. Maydica 48, 93-104.

    Badu-Apraku, B., Oyekunle, M., Menkir, A., Obeng-Antwi, K., Yallou, C.G., Usman, I.S., Alidu, H., 2013. Comparative Performance of Early-maturing Maize Cultivars Developed in Three Eras under Drought Stress and Well-watered Environments in West Africa. Crop Sci. 53, 1298-1311. doi:10.2135/cropsci2012.11.0640

    Baffes, J., 2004. Cotton : Market Setting, Trade Policies, and Issues. World Bank Wash. DC © World Bank.

    Baker, D.N., Lambert, J.R., McKinion, J.M., 1983. GOSSYM: A simulator of cotton crop growth and yield. South Carolina Agric. Exp. Sta. Tech. Bull. 1086. Clemson Univ., Clemson, SC. Available online at http://www.ars.usda.gov/SP2UserFiles/ Place/12755100/GUICS/MAFES(GOSSYM )Documentation.pdf (verified 9 Feb 2015).

    Barrios-Masias, F.H., Jackson, L.E., 2014. California processing tomatoes: Morphological, physiological and phenological traits associated with crop improvement during the last 80 years. Eur. J. Agron. 53, 45-55. doi:10.1016/j.eja.2013.11.007

    Basso, B., Cammarano, D., Troccoli, A., Chen, D., Ritchie, J.T., 2010. Long-term wheat response to nitrogen in a rainfed Mediterranean environment: Field data and simulation analysis. Eur. J. Agron. 33, 132-138. doi:10.1016/j.eja.2010.04.004

  • Related Research Results (2)
  • Similar Research Results (2)
  • Metrics
Share - Bookmark