Uniform Bounds for Solutions to Volume-Surface Reaction Diffusion Systems

Preprint, Other literature type English OPEN
Sharma, Vandana; Morgan, Jeff;
  • Publisher: Khayyam Publishing, Inc.
  • Journal: issn: 0893-4983
  • Subject: 35K57, 35B45 | 35K57 | 35B45 | Mathematics - Analysis of PDEs

We consider a reaction-diffusion system where some components react and diffuse on the boundary of a region, while other components diffuse in the interior and react with those on the boundary through mass transport. We establish criteria guaranteeing that solutions are... View more
  • References (14)
    14 references, page 1 of 2

    [1] F. Henneke, B. Q. Tang Fast reaction limit of a volume-surface reaction-diffusion systems towards a heat equation with dynamical boundary conditions Arxiv

    [2] O. A. Ladyzhenskaia, N. N. Uraltseva, and J. Author. Linear and quasilinear elliptic equations Uniform Title: Lineinye i kvazilineinye uravneniia ellipticheskogo tipa. English. Academic Press, New York, 1968.

    [3] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva. Linear and quasilinear equations of parabolic type. American Mathematical Society, Providence, R.I, 1968.

    [4] A. Madzvamuse, A. H.W. Chung and C. Venkataraman Stability analysis and simulations of coupled bulk-surface reaction-diffusion systems Arxiv,

    [5] K. Masuda. On the global existence and asymptotic behavior of solutions of reaction-diffusion equations. Hokkaido Mathematical Journal, 12(3):360, 1983.

    [6] J. Morgan. Boundedness and decay results for reaction-diffusion systems. SIAM Journal on Mathematical Analysis, 21(5):1172-1189, 1990.

    [7] M. Pierre. Global existence in reaction-diffusion systems with control of mass: a survey. Milan Journal of Mathematics, 78(2):417-455, -12-01 2010.

    [8] M. Pierre and D. Schmitt. Blowup in reaction-diffusion systems with dissipation of mass. SIAM Journal on Mathematical Analysis, 28(2):259-269, 1997.

    [9] A. Ra¨tz, M. Ro¨ger. Turing instabilities in a mathematical model for signaling networks. Journal of Mathematical Biology , Vol. 65, Issue 6-7, 1215-1244, 2012.

    [10] S. Rosenberg. The Laplacian on a Riemannian manifold : an introduction to analysis on manifolds. Cambridge University Press, Cambridge, U.K. ; New York, NY, USA, 1997.

  • Metrics
    No metrics available
Share - Bookmark