Interacting Conceptual Spaces

Article, Preprint English OPEN
Josef Bolt ; Bob Coecke ; Fabrizio Genovese ; Martha Lewis ; Daniel Marsden ; Robin Piedeleu (2016)
  • Publisher: Open Publishing Association
  • Journal: Electronic Proceedings in Theoretical Computer Science (issn: 2075-2180)
  • Related identifiers: doi: 10.4204/EPTCS.221.2
  • Subject: Computer Science - Computation and Language | Computer Science - Artificial Intelligence | Mathematics | Electronic computers. Computer science | Computer Science - Logic in Computer Science | QA1-939 | QA75.5-76.95

We propose applying the categorical compositional scheme of [6] to conceptual space models of cognition. In order to do this we introduce the category of convex relations as a new setting for categorical compositional semantics, emphasizing the convex structure important to conceptual space applications. We show how conceptual spaces for composite types such as adjectives and verbs can be constructed. We illustrate this new model on detailed examples.
  • References (17)
    17 references, page 1 of 2

    [1] B. Adams & M. Raubal (2009): A metric conceptual space algebra. In: Spatial information theory, Springer, pp. 51-68, doi:10.1007/978-3-642-03832-7 4.

    [2] D. Bankova, B. Coecke, M. Lewis & D. Marsden (2015): Graded Entailment for Compositional Distributional Semantics. arXiv:1601.04908. Submitted.

    [3] A. Carboni & R.F.C. Walters (1987): Cartesian bicategories I. Journal of pure and applied algebra 49(1), pp. 11-32, doi:10.1016/0022-4049(87)90121-6.

    [4] B. Coecke, E. Grefenstette & M. Sadrzadeh (2013): Lambek vs. Lambek: Functorial vector space semantics and string diagrams for Lambek calculus. Annals of Pure and Applied Logic 164(11), pp. 1079-1100, doi:10.1016/j.apal.2013.05.009.

    [5] B. Coecke & E.O. Paquette (2011): Categories for the practising physicist. In: New Structures for Physics, Springer, pp. 173-286, doi:10.1007/978-3-642-12821-9.

    [6] B Coecke, M Sadrzadeh & S Clark (2010): Mathematical Foundations for a Compositional Distributional Model of Meaning. Linguistic Analysis 36, pp. 345-384.

    [7] P. Ga¨rdenfors (2004): Conceptual spaces: The geometry of thought. The MIT Press.

    [8] P. Ga¨rdenfors (2014): The geometry of meaning: Semantics based on conceptual spaces. MIT Press.

    [9] B. Jacobs (2011): Coalgebraic walks, in quantum and Turing computation. In: Foundations of Software Science and Computational Structures, Springer, pp. 12-26, doi:10.1007/978-3-642-19805-2 2.

    [10] H. Kamp & B. Partee (1995): Prototype theory and compositionality. Cognition 57(2), pp. 129-191, doi:10.1016/0010-0277(94)00659-9.

  • Metrics
    No metrics available
Share - Bookmark