Interacting Conceptual Spaces

Article, Preprint English OPEN
Bolt, Josef; Coecke, Bob; Genovese, Fabrizio; Lewis, Martha; Marsden, Daniel; Piedeleu, Robin;
(2016)
  • Publisher: Open Publishing Association
  • Journal: Electronic Proceedings in Theoretical Computer Science (issn: 2075-2180)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.4204/EPTCS.221.2
  • Subject: Computer Science - Computation and Language | Computer Science - Artificial Intelligence | Mathematics | Electronic computers. Computer science | Computer Science - Logic in Computer Science | QA1-939 | QA75.5-76.95

We propose applying the categorical compositional scheme of [6] to conceptual space models of cognition. In order to do this we introduce the category of convex relations as a new setting for categorical compositional semantics, emphasizing the convex structure importan... View more
  • References (17)
    17 references, page 1 of 2

    [1] B. Adams & M. Raubal (2009): A metric conceptual space algebra. In: Spatial information theory, Springer, pp. 51-68, doi:10.1007/978-3-642-03832-7 4.

    [2] D. Bankova, B. Coecke, M. Lewis & D. Marsden (2015): Graded Entailment for Compositional Distributional Semantics. arXiv:1601.04908. Submitted.

    [3] A. Carboni & R.F.C. Walters (1987): Cartesian bicategories I. Journal of pure and applied algebra 49(1), pp. 11-32, doi:10.1016/0022-4049(87)90121-6.

    [4] B. Coecke, E. Grefenstette & M. Sadrzadeh (2013): Lambek vs. Lambek: Functorial vector space semantics and string diagrams for Lambek calculus. Annals of Pure and Applied Logic 164(11), pp. 1079-1100, doi:10.1016/j.apal.2013.05.009.

    [5] B. Coecke & E.O. Paquette (2011): Categories for the practising physicist. In: New Structures for Physics, Springer, pp. 173-286, doi:10.1007/978-3-642-12821-9.

    [6] B Coecke, M Sadrzadeh & S Clark (2010): Mathematical Foundations for a Compositional Distributional Model of Meaning. Linguistic Analysis 36, pp. 345-384.

    [7] P. Ga¨rdenfors (2004): Conceptual spaces: The geometry of thought. The MIT Press.

    [8] P. Ga¨rdenfors (2014): The geometry of meaning: Semantics based on conceptual spaces. MIT Press.

    [9] B. Jacobs (2011): Coalgebraic walks, in quantum and Turing computation. In: Foundations of Software Science and Computational Structures, Springer, pp. 12-26, doi:10.1007/978-3-642-19805-2 2.

    [10] H. Kamp & B. Partee (1995): Prototype theory and compositionality. Cognition 57(2), pp. 129-191, doi:10.1016/0010-0277(94)00659-9.

  • Metrics
Share - Bookmark