publication . Article . Other literature type . 2015

Model-based analysis of pattern motion processing in mouse primary visual cortex.

Dylan Richard Muir; Dylan Richard Muir; Morgane eRoth; Morgane eRoth; Fritjof eHelmchen; Bjoern eKampa; Bjoern eKampa;
Open Access English
  • Published: 01 Aug 2015 Journal: Frontiers in Neural Circuits, volume 9 (eissn: 1662-5110, Copyright policy)
  • Publisher: Frontiers Media S.A.
  • Country: Switzerland
Abstract
Neurons in sensory areas of neocortex show responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory...
Subjects
free text keywords: Brain Research Institute, 570 Life sciences; biology, 610 Medicine & health, Bayesian framework, model-based analysis, mouse, pattern integration, plaid stimuli, primary visual cortex (V1), two-photon imaging, Neuroscience, Original Research, mouse, primary visual cortex (V1), pattern integration, plaid stimuli, model-based analysis, Bayesian framework, two-photon imaging, Bayesian inference, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571, Sensory Systems, Cognitive Neuroscience, Cellular and Molecular Neuroscience, Neuroscience (miscellaneous), Sensory system, Stimulus (physiology), Bayes' theorem, Primary sensory areas, medicine.anatomical_structure, medicine, Biology, Neocortex, Visual cortex, Motion perception
Funded by
EC| BRAINSCALES
Project
BRAINSCALES
Brain-inspired multiscale computation in neuromorphic hybrid systems
  • Funder: European Commission (EC)
  • Project Code: 269921
  • Funding stream: FP7 | SP1 | ICT
,
SNSF| Information processing in neuronal networks of the visual cortex
Project
  • Funder: Swiss National Science Foundation (SNSF)
  • Project Code: 31003A-120480
  • Funding stream: Project funding | Project funding (Div. I-III)
Communities
FET FP7FET Proactive: FET proactive 8: Brain Inspired ICT
FET FP7FET Proactive: Brain-inspired multiscale computation in neuromorphic hybrid systems
51 references, page 1 of 4

Adelson E. H. Movshon J. A. (1982). Phenomenal coherence of moving visual patterns. Nature 300, 523–525. 10.1038/300523a0 7144903 [OpenAIRE] [PubMed] [DOI]

Andermann M. L. Kerlin A. M. Roumis D. K. Glickfeld L. L. Reid R. C. (2011). Functional specialization of mouse higher visual cortical areas. Neuron 72, 1025–1039. 10.1016/j.neuron.2011.11.013 22196337 [OpenAIRE] [PubMed] [DOI]

Anderson C. T. Sheets P. L. Kiritani T. Shepherd G. M. (2010). Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex. Nat. Neurosci. 13, 739–744. 10.1038/nn.2538 20436481 [OpenAIRE] [PubMed] [DOI]

Barlow H. B. Hill R. M. Levick W. R. (1964). Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. 173, 377–407. 14220259 [OpenAIRE] [PubMed]

Baron J. Pinto L. Dias M. O. Lima B. Neuenschwander S. (2007). Directional responses of visual wulst neurones to grating and plaid patterns in the awake owl. Eur. J. Neurosci. 26, 1950–1968. 10.1111/j.1460-9568.2007.05783.x 17897399 [OpenAIRE] [PubMed] [DOI]

Binzegger T. Douglas R. J. Martin K. A. (2004). A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453. 10.1523/JNEUROSCI.1400-04.2004 15456817 [OpenAIRE] [PubMed] [DOI]

Bro wn S. P. Hestrin S. (2009). Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136. 10.1038/nature07658 19151698 [OpenAIRE] [PubMed] [DOI]

Cohen J. (1992). A power primer. Psychol. Bull. 112, 155–159. 10.1037/0033-2909.112.1.155 19565683 [OpenAIRE] [PubMed] [DOI]

Cossell L. Iacaruso M. F. Muir D. R. Houlton R. Sader E. N. Ko H. . (2015). Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403. 10.1038/nature14182 25652823 [OpenAIRE] [PubMed] [DOI]

Cruz-Martín A. El-Danaf R. N. Osakada F. Sriram B. Dhande O. S. Nguyen P. L. . (2014). A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507, 358–361. 10.1038/nature12989 24572358 [OpenAIRE] [PubMed] [DOI]

Douglas R. J. Martin K. A. C. Whitteridge D. (1989). A canonical microcircuit for neocortex. Neural Comput. 1, 480–488. 10.1162/neco.1989.1.4.480 [OpenAIRE] [DOI]

Gizzi M. S. Katz E. Schumer R. A. Movshon J. A. (1990). Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. J. Neurophysiol. 63, 1529–1543. 2358891 [OpenAIRE] [PubMed]

Gulledge A. T. Kampa B. M. Stuart G. J. (2005). Synaptic integration in dendritic trees. J. Neurobiol. 64, 75–90. 10.1002/neu.20144 15884003 [OpenAIRE] [PubMed] [DOI]

Guo K. Benson P. J. Blakemore C. (2004). Pattern motion is present in V1 of awake but not anaesthetized monkeys. Eur. J. Neurosci. 19, 1055–1066. 10.1111/j.1460-9568.2004.03212.x 15009153 [OpenAIRE] [PubMed] [DOI]

Jeffreys H. (1961). Theory of Probability. Oxford: Clarendon Press.

51 references, page 1 of 4
Abstract
Neurons in sensory areas of neocortex show responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory...
Subjects
free text keywords: Brain Research Institute, 570 Life sciences; biology, 610 Medicine & health, Bayesian framework, model-based analysis, mouse, pattern integration, plaid stimuli, primary visual cortex (V1), two-photon imaging, Neuroscience, Original Research, mouse, primary visual cortex (V1), pattern integration, plaid stimuli, model-based analysis, Bayesian framework, two-photon imaging, Bayesian inference, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571, Sensory Systems, Cognitive Neuroscience, Cellular and Molecular Neuroscience, Neuroscience (miscellaneous), Sensory system, Stimulus (physiology), Bayes' theorem, Primary sensory areas, medicine.anatomical_structure, medicine, Biology, Neocortex, Visual cortex, Motion perception
Funded by
EC| BRAINSCALES
Project
BRAINSCALES
Brain-inspired multiscale computation in neuromorphic hybrid systems
  • Funder: European Commission (EC)
  • Project Code: 269921
  • Funding stream: FP7 | SP1 | ICT
,
SNSF| Information processing in neuronal networks of the visual cortex
Project
  • Funder: Swiss National Science Foundation (SNSF)
  • Project Code: 31003A-120480
  • Funding stream: Project funding | Project funding (Div. I-III)
Communities
FET FP7FET Proactive: FET proactive 8: Brain Inspired ICT
FET FP7FET Proactive: Brain-inspired multiscale computation in neuromorphic hybrid systems
51 references, page 1 of 4

Adelson E. H. Movshon J. A. (1982). Phenomenal coherence of moving visual patterns. Nature 300, 523–525. 10.1038/300523a0 7144903 [OpenAIRE] [PubMed] [DOI]

Andermann M. L. Kerlin A. M. Roumis D. K. Glickfeld L. L. Reid R. C. (2011). Functional specialization of mouse higher visual cortical areas. Neuron 72, 1025–1039. 10.1016/j.neuron.2011.11.013 22196337 [OpenAIRE] [PubMed] [DOI]

Anderson C. T. Sheets P. L. Kiritani T. Shepherd G. M. (2010). Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex. Nat. Neurosci. 13, 739–744. 10.1038/nn.2538 20436481 [OpenAIRE] [PubMed] [DOI]

Barlow H. B. Hill R. M. Levick W. R. (1964). Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. 173, 377–407. 14220259 [OpenAIRE] [PubMed]

Baron J. Pinto L. Dias M. O. Lima B. Neuenschwander S. (2007). Directional responses of visual wulst neurones to grating and plaid patterns in the awake owl. Eur. J. Neurosci. 26, 1950–1968. 10.1111/j.1460-9568.2007.05783.x 17897399 [OpenAIRE] [PubMed] [DOI]

Binzegger T. Douglas R. J. Martin K. A. (2004). A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453. 10.1523/JNEUROSCI.1400-04.2004 15456817 [OpenAIRE] [PubMed] [DOI]

Bro wn S. P. Hestrin S. (2009). Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136. 10.1038/nature07658 19151698 [OpenAIRE] [PubMed] [DOI]

Cohen J. (1992). A power primer. Psychol. Bull. 112, 155–159. 10.1037/0033-2909.112.1.155 19565683 [OpenAIRE] [PubMed] [DOI]

Cossell L. Iacaruso M. F. Muir D. R. Houlton R. Sader E. N. Ko H. . (2015). Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403. 10.1038/nature14182 25652823 [OpenAIRE] [PubMed] [DOI]

Cruz-Martín A. El-Danaf R. N. Osakada F. Sriram B. Dhande O. S. Nguyen P. L. . (2014). A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507, 358–361. 10.1038/nature12989 24572358 [OpenAIRE] [PubMed] [DOI]

Douglas R. J. Martin K. A. C. Whitteridge D. (1989). A canonical microcircuit for neocortex. Neural Comput. 1, 480–488. 10.1162/neco.1989.1.4.480 [OpenAIRE] [DOI]

Gizzi M. S. Katz E. Schumer R. A. Movshon J. A. (1990). Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. J. Neurophysiol. 63, 1529–1543. 2358891 [OpenAIRE] [PubMed]

Gulledge A. T. Kampa B. M. Stuart G. J. (2005). Synaptic integration in dendritic trees. J. Neurobiol. 64, 75–90. 10.1002/neu.20144 15884003 [OpenAIRE] [PubMed] [DOI]

Guo K. Benson P. J. Blakemore C. (2004). Pattern motion is present in V1 of awake but not anaesthetized monkeys. Eur. J. Neurosci. 19, 1055–1066. 10.1111/j.1460-9568.2004.03212.x 15009153 [OpenAIRE] [PubMed] [DOI]

Jeffreys H. (1961). Theory of Probability. Oxford: Clarendon Press.

51 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2015

Model-based analysis of pattern motion processing in mouse primary visual cortex.

Dylan Richard Muir; Dylan Richard Muir; Morgane eRoth; Morgane eRoth; Fritjof eHelmchen; Bjoern eKampa; Bjoern eKampa;