Action-angle variables and a KAM theorem for b-Poisson manifolds

Report, Article, Preprint English OPEN
Miranda Galcerán, Eva ; Kiesenhofer, Anna ; Scott, Geoffrey (2016)
  • Related identifiers: doi: 10.1016/j.matpur.2015.09.006
  • Subject: Mathematics - Symplectic Geometry | Equacions diferencials parcials | Hamiltonian systems | Poisson manifolds | Mathematics - Dynamical Systems | Differential equations | Sistmes dinàmics | Action-angle variables | KAM theorem | Symplectic manifolds | SYSTEMS | DEFORMATIONS | :Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics [Àrees temàtiques de la UPC] | :Matemàtiques i estadística [Àrees temàtiques de la UPC] | :Matemàtiques i estadística::Geometria [Àrees temàtiques de la UPC] | Integrable systems | Sistemes hamiltonians

In this article we prove an action-angle theorem for b-integrable systems on b-Poisson manifolds improving the action-angle theorem contained in [14] for general Poisson manifolds in this setting. As an application, we prove a KAM-type theorem for b-Poisson manifolds. (... View more
  • References (27)
    27 references, page 1 of 3

    V. I. Arnold, Mathematical methods of classical mechanics. Graduate Texts in Mathematics, 60 originally published by Nauka, Moscow, 1974 2nd ed. 1989, XVI, 520 p.

    [A89] V. I. Arnold, Remarks on Poisson structures on a plane and on other powers of volume elements. Trudy Sem. Petrovsk. No. 12 (1987), 37{46, 242; translation in J. Soviet Math. 47 (1989), no. 3, 2509{2516.

    [C09] L. Chierchia, Kolmogorov{Arnold{Moser (KAM) Theory, Encyclopedia of Complexity and Systems Science, p. 5064-5091, 2009.

    [DKRS14] A. Delshams, V. Kaloshin, A de la Rosa, T. M.-Seara, Global instability in the elliptic restricted three body problem, arXiv:1501.01214.

    [D82] R. Devaney, Blowing up singularities in classical mechanical systems. Amer. Math. Monthly 89 (1982), no. 8, 535{552.

    [D80] J.J Duistermaat, On global action-angle coordinates, Communications on pure and applied mathematics, 23, (1980), 687-706.

    [E17] A. Einstein, Zum Quantensatz von Sommerfeld und Epstein, Verhandlungen der Deutschen Physikalischen Gesellschaft. 19: 82-92 (1917).

    [FW14] A. Fortunati and S. Wiggins, A Kolmogorov theorem for nearly-integrable Poisson systems with asymptotically decaying time-dependent perturbation, arXiv:1409.0430.

    [F13] , J. Fejoz, On action-angle coordinates and the Poincare coordinates, Regular and Chaotic Dynamics, Special Issue dedicated to Alain Chenciner on the occasion of his 70th anniversary, 18:6 (2013), 703{718.

    [G14L] M. Gualtieri and S. Li, Symplectic groupoids of log symplectic manifolds, Int. Math. Res. Not. IMRN 2014, no. 11, 3022{3074.

  • Metrics
    No metrics available