From racks to pointed Hopf algebras

Article, Preprint English OPEN
Andruskiewitsch, Nicolas; Graña, Matias;
(2002)

A fundamental step in the classification of finite-dimensional complex pointed Hopf algebras is the determination of all finite-dimensional Nichols algebras of braided vector spaces arising from groups. The most important class of braided vector spaces arising from grou... View more
  • References (21)
    21 references, page 1 of 3

    [A] N. Andruskiewitsch, About finite dimensional Hopf algebras, in “Quantum symmetries in theoretical physics and mathematics”; Contemp. Math. 294 (2002).

    [AD] N. Andruskiewitsch and S. D˘asca˘lescu, On quantum groups at −1, Algebr. Represent. Theory, to appear.

    [AG] N. Andruskiewitsch and M. Gran˜a, Braided Hopf algebras over non-abelian groups, Bol. Acad. Ciencias (Co´rdoba) 63 (1999), 45-78. Also in math.QA/9802074.

    [AS1] N. Andruskiewitsch and H-J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order p3, J. Algebra 209 2 (1998), 659-691.

    [AS2] N. Andruskiewitsch and H-J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math. 154 (2000), 1-45.

    [AS3] N. Andruskiewitsch and H-J. Schneider, Pointed Hopf Algebras, in “New directions in Hopf algebras”, Cambridge Univ. Press, S. Montgomery and H-J. Schneider (editors).

    [B] E. Brieskorn, Automorphic sets and singularities, Contemp. Math. 78 (1988), 45-115.

    [CES] J.S. Carter, M. Elhamdadi and M. Saito, Twisted quandle homology theory and Cocycle knot invariants, Algebr. Geom. Topol. 2 (2002), 95-135.

    [CENS] J.S. Carter, M. Elhamdadi, M. A. Nikiforou and M. Saito, Extensions of quandles and cocycle knot invariants, math.GT/0107021.

    [CHNS] J.S. Carter, A. Harris, M. A. Nikiforou and M. Saito, Cocycle knot invariants, quandle extensions, and Alexander matrices, math.GT/0204113.

  • Metrics
Share - Bookmark