Mathematical symbol hypothesis recognition with rejection option

Conference object English OPEN
Julca-Aguilar , Frank; Hirata , Nina ,; Viard-Gaudin , Christian; Mouchère , Harold; Medjkoune , Sofiane;
  • Publisher: HAL CCSD
  • Related identifiers: doi: 10.1109/ICFHR.2014.90
  • Subject: symbol segmentation | [ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing | Mathematical symbol classification and rejection | shape context
    acm: ComputingMethodologies_PATTERNRECOGNITION | ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION

International audience; In the context of handwritten mathematical expressions recognition, a first step consist on grouping strokes (segmentation) to form symbol hypotheses: groups of strokes that might represent a symbol. Then, the symbol recognition step needs to cop... View more
  • References (13)
    13 references, page 1 of 2

    [1] N. E. Matsakis, “Recognition of handwritten mathematical expressions,” Master's thesis, Massachusetts Institute of Technology, Cambridge, 1999.

    [2] S. MacLean and G. Labahn, “A new approach for recognizing handwritten mathematics using relational grammars and fuzzy sets,” International Journal on Document Analysis and Recognition (IJDAR), vol. 16, no. 2, pp. 139-163, 2013.

    [3] F. A´ lvaro, J.-A. Sa´nchez, and J.-M. Bened´ı, “Recognition of on-line handwritten mathematical expressions using 2d stochastic context-free grammars and hidden markov models,” Pattern Recognition Letters, no. 0, pp. 58 - 67, 2012.

    [4] A.-M. Awal, H. Mouche´re, and C. Viard-Gaudin, “A global learning approach for an online handwritten mathematical expression recognition system,” Pattern Recognition Letters, vol. 35, no. 0, pp. 68 - 77, 2012.

    [5] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape contexts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, pp. 509-522, April 2002.

    [6] H. Mouchere, C. Viard-Gaudin, U. Garain, D. H. Kim, K. J. H., and Z. R. (2013, April) Icdar 2013 crohme: Competition on recognition of online handwritten mathematical expressions.

    [7] B. Huang and M.-T. Kechadi, “A structural analysis approach for online handwritten mathematical expressions,” in International Journal of Computer Science and Network Security,, 2007.

    [8] S. Lehmberg, H.-J. Winkler, and M. Lang, “A soft-decision approach for symbol segmentation within handwritten mathematical expressions,” in International Conference on Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings, 1996 IEEE, vol. 6, May 1996, pp. 3434- 3437 vol. 6.

    [9] E. Tapia, “Understanding mathematics: A system for the recognition of on-line handwritten mathematical expression,” Ph.D. dissertation, Freie Universitt Berlin, 2004.

    [10] L. Prasanth, V. Babu, R. Sharma, G. V. Rao, and D. M., “Elastic Matching of Online Handwritten Tamil and Telugu Scripts Using Local Features,” in Proceedings of the Ninth International Conference on Document Analysis and Recognition - Volume 02, 2007, pp. 1028-1032.

  • Metrics
Share - Bookmark