Lasso and probabilistic inequalities for multivariate point processes

Article, Preprint, Other literature type English OPEN
Hansen , Niels Richard; Reynaud-Bouret , Patricia; Rivoirard , Vincent;
(2015)
  • Publisher: Bernoulli Society for Mathematical Statistics and Probability
  • Journal: issn: 1350-7265
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.3150/13-BEJ562
  • Subject: Mathematics - Statistics Theory | Bernstein-type inequalities | 62G05, 62M09, 60G55, 60E15 | [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] | Hawkes processes | multivariate counting process | [ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH] | [ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST] | Lasso procedure | [STAT.TH]Statistics [stat]/Statistics Theory [stat.TH] | adaptive estimation
    arxiv: Statistics::Theory

Due to its low computational cost, Lasso is an attractive regularization method for high-dimensional statistical settings. In this paper, we consider multivariate counting processes depending on an unknown function parameter to be estimated by linear combinations of a f... View more
  • References (63)
    63 references, page 1 of 7

    [2] Andersen, P. K., Borgan, ., Gill, R. D. and Keiding, N. (1993). Statistical models based on counting processes. Springer Series in Statistics. SpringerVerlag, New York.

    [3] Bacry, E., Delattre, S., Ho mann, M. and Muzy, J.F. (2013). Some limit theorems for Hawkes processes and application to nancial statistics. Stoch. Proc. Appl. 123(7), 2475{2499.

    [4] Bercu, B. and Touati, A. (2008). Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Prob. 18(5), 1848{1869.

    [5] Bertin, K., Le Pennec, E. and Rivoirard, V. (2011). Adaptive Dantzig density estimation. Ann. Inst. Henri Poincare Probab. Statist. 47(1), 43{74.

    [6] Bickel, P. J., Ritov, Y. and Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist. 37(4), 1705{1732.

    [7] Bowsher, C. G. (2010). Stochastic kinetic models: Dynamic independence, modularity and graphs. Ann. Statist. 38(4):2242{2281.

    [8] Bremaud, P. (1981). Point processes and queues. Springer-Verlag, New York.

    [9] Bremaud, P. and Massoulie, L. (1996). Stability of nonlinear Hawkes processes. Ann. Prob. 24(3), 1563{1588.

    [10] Brette, R. and Destexhe, A. (2012). Handbook of Neural Activity Measurement. Cambridge University Press.

    [11] Brunel, E. and Comte, F. (2005). Penalized contrast estimation of density and hazard rate with censored data. Sankhya. 67(3), 441{475.

  • Related Research Results (1)
  • Related Organizations (4)
  • Metrics
Share - Bookmark