The Matlab Radial Basis Function Toolbox

Software Paper, Article English OPEN
Sarra, Scott A.; (2017)
  • Publisher: Ubiquity Press
  • Journal: Journal of Open Research Software (issn: 2049-9647, eissn: 2049-9647)
  • Related identifiers: doi: 10.5334/jors.131
  • Subject: Matlab | extended precision | Computer software | Radial Basis Functions | object oriented programming | numerical partial differential equations | QA76.75-76.765 | Radial Basis Functions; numerical partial differential equations; extended precision; Matlab; object oriented programming
    acm: MathematicsofComputing_NUMERICALANALYSIS

Radial Basis Function (RBF) methods are important tools for scattered data interpolation and for the solution of Partial Differential Equations in complexly shaped domains. The most straight forward approach used to evaluate the methods involves solving a linear system ... View more
  • References (24)
    24 references, page 1 of 3

    1. Advanpix 2016 Multiprecision computing toolbox for Matlab, version 3.9.9 for 64-bit Linux. http://www. advanpix.com/.

    2. Buhmann, M D 2003 Radial Basis Functions. Cambridge University Press, ISBN 0521633389. DOI: https://doi.org/10.1017/CBO9780511543241

    3. Fasshauer, G and McCourt, M 2012 Stable evaluation of Gaussian RBF interpolants. SIAM Journal on Scientific Computing, 34: 737-762. DOI: https://doi. org/10.1137/110824784

    4. Fasshauer, G E 2007 Meshfree Approximation Methods with Matlab. World Scientific. DOI: https://doi. org/10.1142/6437

    5. Fornberg, B, Larsson, E and Flyer, N 2011 Stable computations with gaussian radial basis functions in 2-d. SIAM Journal on Scientific Computing , 33: 869- 892. DOI: https://doi.org/10.1137/09076756X

    6. Henderson, H V and Searle, S R 1981 On deriving the inverse of a sum of matrices. SIAM Review, 23(2): 53-60. DOI: https://doi.org/10.1137/1023004

    7. Huang, C-S, Leebn C-F and Cheng, A-D 2007 Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method. Engineering Analysis with Boundary Elements, 31: 614-623. DOI: https://doi.org/10.1016/j.enganabound.2006.11.011

    8. Kansa, E J 1990 Multiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics I: Surface approximations and partial derivative estimates. Computers and Mathematics with Applications, 19 (8/9): 127-145. DOI: https:// doi.org/10.1016/0898-1221(90)90270-T

    9. Kansa, E J 1990 Multiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics II: Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Computers and Mathematics with Applications, 19(8/9): 147-161. DOI: https://doi. org/10.1016/0898-1221(90)90271-K

    10. Kansa, E J and Carlson, R 1992 Improved accuracy of multiquadric interpolation using variable shape parameters. Computers and Mathematics with Applications, 24: 99-120. DOI: https://doi.org/10.1016/0898- 1221(92)90174-G

  • Related Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark