Gaussian pseudo-maximum likelihood estimation of fractional time series models

Preprint, Other literature type English OPEN
Hualde, Javier; Robinson, Peter M.;
(2011)
  • Publisher: The Institute of Mathematical Statistics
  • Journal: issn: 0090-5364
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1214/11-AOS931
  • Subject: asymptotic normality | 62M10 | Mathematics - Statistics Theory | Gaussian estimation | multiple time series | Fractional processes | nonstationarity | noninvertibility | 62F12 | consistency

We consider the estimation of parametric fractional time series models in which not only is the memory parameter unknown, but one may not know whether it lies in the stationary/invertible region or the nonstationary or noninvertible regions. In these circumstances, a pr... View more
  • References (27)
    27 references, page 1 of 3

    [1] Abramowitz, M. and Stegun, I. (1970). Handbook of Mathematical Functions. Dover, New York.

    [2] Adenstedt, R. K. (1974). On large-sample estimation for the mean of a stationary random sequence. Ann. Statist. 2 1095-1107. MR0368354

    [3] Beran, J. (1995). Maximum likelihood estimation of the differencing parameter for invertible short and long memory autoregressive integrated moving average models. J. Roy. Statist. Soc. Ser. B 57 659-672. MR1354073

    [4] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. MR0233396

    [5] Bloomfield, P. (1973). An exponential model for the spectrum of a scalar time series. Biometrika 60 217-226. MR0323048

    [6] Box, G. E. P. and Jenkins, G. M. (1971). Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco, CA.

    [7] Brown, B. M. (1971). Martingale central limit theorems. Ann. Math. Statist. 42 59-66. MR0290428

    [8] Dahlhaus, R. (1989). Efficient parameter estimation for self-similar processes. Ann. Statist. 17 1749-1766. MR1026311

    [9] Fox, R. and Taqqu, M. S. (1986). Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 517-532. MR0840512

    [10] Giraitis, L. and Surgailis, D. (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate. Probab. Theory Related Fields 86 87-104. MR1061950

  • Metrics
Share - Bookmark