A chemical library to screen protein and protein-ligand crystallization using a versatile microfluidic platform

Article, Preprint English OPEN
Gerard , Charline ,; Ferry , Gilles; Vuillard , Laurent ,; Boutin , Jean ,; Ferte , Nathalie ,; Grossier , Romain ,; Candoni , Nadine ,; Veesler , Stéphane ,;
(2018)
  • Publisher: HAL CCSD
  • Related identifiers: doi: 10.1021/acs.cgd.8b00572
  • Subject: Co-crystallization | [ SDV.BBM.BS ] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] | [ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process Engineering | [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering | Crystallization | [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] | Microfluidic | Biological macromolecules | [ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] | [SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM]

International audience; Here, we describe a plug-and-play microfluidic platform, suitable for protein crystallization. The droplet factory is designed to generate hundreds of droplets as small as a few nanoliters (2 to 10nL) for screening and optimization of crystalliza... View more
  • References (18)
    18 references, page 1 of 2

    (1) Blundell, T. L., Structure-based drug design. Nature 1996, 384, (6604 Suppl), 23-6.

    (2) Maeki, M.; Yamaguchi, H.; Tokeshi, M.; Miyazaki, M., Microfluidic Approaches for Protein Crystal Structure Analysis. Analytical Sciences 2016, 32, (1), 3-9.

    (3) Galkin, O.; Vekilov, P. G., Are Nucleation Kinetics of Protein Crystals Similar to Those of Liquid Droplets? Journal of the American Chemical Society 1999, 122, (1), 156-163.

    (4) Hammadi, Z.; Grossier, R.; Ikni, A.; Candoni, N.; Morin, R.; Veesler, S., Localizing and inducing primary nucleation. Faraday Discussions 2015.

    (5) Ferrer, J.-L.; Larive, N. A.; Bowler, M. W.; Nurizzo, D., Recent progress in robot-based systems for crystallography and their contribution to drug discovery. Expert Opinion on Drug Discovery 2013, 8, (7), 835-847.

    (6) Leng, J.; Salmon, J.-B., Microfluidic crystallization. Lab on a Chip 2009, 9, (1), 24-34.

    (7) Candoni N.; Grossier R.; Hammadi Z.; Morin R.; Veesler S., Practical Physics Behind Growing Crystals of Biological Macromolecules Protein & Peptide Letters 2012, 19, (7), 714-724.

    (8) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R., A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proceedings of the National Academy of Sciences 2002, 99, (26), 16531-16536.

    (9) Perry, S. L.; Guha, S.; Pawate, A. S.; Bhaskarla, A.; Agarwal, V.; Nair, S. K.; Kenis, P. J. A., A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab on a Chip 2013, 13, (16), 3183-3187.

    (10) Dhouib, K.; Malek, C. K.; Pfleging, W.; Gauthier-Manuel, B.; Duffait, R.; Thuillier, G.; Ferrigno, R.; Jacquamet, L.; Ohana, J.; Ferrer, J.-L.; Theobald-Dietrich, A.; Giege, R.; Lorber, B.; Sauter, C., Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab on a Chip 2009, 9, (10), 1412-1421.

  • Metrics
Share - Bookmark