Dirichlet Characters, Gauss Sums, and Inverse Z Transform

Other literature type, Article English OPEN
Gao, Jing; Liu, Huaning;
(2012)

A generalized Möbius transform is presented. It is based on Dirichlet characters. A general algorithm is developed to compute the inverse $Z$ transform on the unit circle, and an error estimate is given for the truncated series representation.
  • References (10)

    Bruns, H.. Grundlinien des Wissenschaftlichichnen Rechnens. 1903

    Wintner, A.. An Arithmetical Approach to Ordinary Fourier Series. 1946

    Sadasiv, G.. The arithmetic Fourier transform. IEEE ASSP Magazine. 1988; 5 (1): 13-17

    Reed, I. S., Tufts, D. W., Yu, X., Truong, T. K., Shih, M. T., Yin, X.. Fourier analysis and signal processing by use of the Mobius inversion formula. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1990; 38 (3): 458-470

    Reed, I. S., Shih, M. T., Truong, T. K., Hendon, E., Tufts, D. W.. A VLSI architecture for simplified arithmetic Fourier transform algorithm. IEEE Transactions on Signal Processing. 1992; 40 (5): 1122-1133

    Knockaert, L.. Generalized Mobius transform and arithmetic fourier transforms. IEEE Transactions on Signal Processing. 1994; 42 (11): 2967-2971

    Knockaert, L.. A generalized möbius transform, arithmetic fourier transforms, and primitive roots. IEEE Transactions on Signal Processing. 1996; 44 (5): 1307-1310

    Schiff, J. L., Surendonk, T. J., Walker, W. J.. An algorithm for computing the inverse Z transform. IEEE Transactions on Signal Processing. 1992; 40 (9): 2194-2198

    Hsu, C. C., Reed, I. S., Truong, T. K.. Inverse Z-transform by Mobius inversion and the error bounds of aliasing in sampling. IEEE Transactions on Signal Processing. 1994; 42 (10): 2823-2830

    Apostol, T. M.. Introduction to Analytic Number Theory. 1976: xii+338

  • Metrics
Share - Bookmark