publication . Article . Conference object . Other literature type . Preprint . 2013

Spin modulation instabilities and phase separation dynamics in trapped two-component Bose condensates

Ivana Vidanović; N.J. van Druten; Masudul Haque;
Open Access
  • Published: 06 Mar 2013 Journal: New Journal of Physics (eissn: 1367-2630, Copyright policy)
In the study of trapped two-component Bose gases, a widely used dynamical protocol is to start from the ground state of a one-component condensate and then switch half the atoms into another hyperfine state. The slightly different intra-component and inter-component interactions can then lead to highly nontrivial dynamics. We study and classify the possible subsequent dynamics, over a wide variety of parameters spanned by the trap strength and by the inter- to intra-component interaction ratio. A stability analysis suited to the trapped situation provides us with a framework to explain the various types of dynamics in different regimes.
arXiv: Condensed Matter::Quantum Gases
free text keywords: General Physics and Astronomy, Condensed Matter - Quantum Gases, Atomic physics, Ground state, Phase (matter), Atom, Physics, Modulation, Hyperfine structure, Spin-½, ddc:530
Funded by
MESTD| Modeling and Numerical Simulations of Complex Many-Body Systems
  • Funder: Ministry of Education, Science and Technological Development of Republic of Serbia (MESTD)
  • Project Code: 171017
  • Funding stream: Basic Research (BR or ON)
European Grid Initiative: Integrated Sustainable Pan-European Infrastructure for Researchers in Europe
  • Funder: European Commission (EC)
  • Project Code: 261323
  • Funding stream: FP7 | SP4 | INFRA
EGI FederationEGI Projects: EGI-InSPIRE
41 references, page 1 of 3

[1] M. R. Matthews, D. S. Hall, D. S. Jin, J. R. Ensher, C. E. Wieman, E. A. Cornell, F. Dalfovo, C. Minniti, and S. Stringari, Phys. Rev. Lett. 81, 243 (1998).

[2] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).

[3] H.-J. Miesner, D. M. Stamper-Kurn, J. Stenger, S. Inouye, A. P. Chikkatur, and W. Ketterle, Phys. Rev. Lett. 82, 2228 (1999).

[4] H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, Phys. Rev. Lett. 88, 070403 (2002)

[5] K. M. Mertes, J. W. Merrill, R. Carretero-Gonza´lez, D. J. Frantzeskakis, P. G. Kevrekidis, and D. S. Hall, Phys. Rev. Lett. 99, 190402 (2007).

[6] P. Wicke, S. Whitlock, and N. J. van-Druten, arXiv:1010.4545.

[7] R. P. Anderson, C. Ticknor, A. I. Sidorov, and B. V. Hall, Phys. Rev. A 80, 023603 (2009)

[8] P. Boehi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Haensch, and P. Treutlein, Nat. Phys. 5, 592 (2009).

[9] M. Egorov, R. P. Anderson, V. Ivannikov, B. Opanchuk, P. Drummond, B. V. Hall, and A. I. Sidorov, Phys. Rev. A 84, 021605 (2011).

[10] S. B. Papp, J. M. Pino, and C. E. Wieman, Phys. Rev. Lett. 101, 040402 (2008).

[11] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 78, 586 (1997).

[12] G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002).

[13] C. Hamner, J. J. Chang, P. Engels, and M. A. Hoefer, Phys. Rev. Lett. 106, 065302 (2011).

[14] R. Navarro, R. Carretero-Gonza´lez, and P. G. Kevrekidis, Phys. Rev. A 80, 023613 (2009).

[15] Tin-Lun Ho and V. B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996).

41 references, page 1 of 3
Any information missing or wrong?Report an Issue