publication . Article . Other literature type . Preprint . 2019

Generalised CP symmetry in modular-invariant models of flavour.

Novichkov, P.P.; Penedo, J.T.; Petcov, S.T.; Titov, A.V.;
Open Access
  • Published: 01 Jul 2019 Journal: Journal of High Energy Physics, volume 2,019 (eissn: 1029-8479, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
  • Country: United Kingdom
The formalism of combined finite modular and generalised CP (gCP) symmetries for theories of flavour is developed. The corresponding consistency conditions for the two symmetry transformations acting on the modulus $\tau$ and on the matter fields are derived. The implications of gCP symmetry in theories of flavour based on modular invariance described by finite modular groups are illustrated with the example of a modular $S_4$ model of lepton flavour. Due to the addition of the gCP symmetry, viable modular models turn out to be more constrained, with the modulus $\tau$ being the only source of CP violation.
arXiv: High Energy Physics::PhenomenologyHigh Energy Physics::ExperimentPhysics::General Physics
free text keywords: Nuclear and High Energy Physics, Particle physics, Modular invariance, Physics beyond the Standard Model, Invariant (mathematics), Modular design, business.industry, business, CP violation, Formalism (philosophy), Physics, Lepton, Flavour, Theoretical physics, High Energy Physics - Phenomenology, High Energy Physics - Theory, Beyond Standard Model, Neutrino Physics, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798
Funded by
FCT| UID/FIS/00777/2013
Centre for Thoretical Particle Physics
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. (FCT)
  • Project Code: 147214
  • Funding stream: 5876
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
EC| InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
19 references, page 1 of 2

[23] T. Kobayashi, K. Tanaka and T. H. Tatsuishi, Neutrino mixing from nite modular groups, Phys. Rev. D98 (2018) 016004 [1803.10391].

[24] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida, Finite modular subgroups for fermion mass matrices and baryon/lepton number violation, 1812.11072.

[25] J. C. Criado and F. Feruglio, Modular Invariance Faces Precision Neutrino Data, SciPost Phys. 5 (2018) 042 [1807.01125].

[26] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, Modular A4 invariance and neutrino mixing, 1808.03012.

[27] F. J. de Anda, S. F. King and E. Perdomo, SU (5) Grand Uni ed Theory with A4 Modular Symmetry, 1812.05620.

[28] H. Okada and M. Tanimoto, CP violation of quarks in A4 modular invariance, Phys. Lett. B791 (2019) 54 [1812.09677].

[29] P. P. Novichkov, S. T. Petcov and M. Tanimoto, Trimaximal Neutrino Mixing from Modular A4 Invariance with Residual Symmetries, Phys. Lett. B793 (2019) 247 [1812.11289]. [OpenAIRE]

[30] J. T. Penedo and S. T. Petcov, Lepton Masses and Mixing from Modular S4 Symmetry, Nucl. Phys. B939 (2019) 292 [1806.11040]. [OpenAIRE]

[31] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, Modular S4 models of lepton masses and mixing, JHEP 04 (2019) 005 [1811.04933].

[32] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, Modular A5 Symmetry for Flavour Model Building, JHEP 04 (2019) 174 [1812.02158].

[40] S. Ferrara, D. Lust and S. Theisen, Target Space Modular Invariance and Low-Energy Couplings in Orbifold Compacti cations, Phys. Lett. B233 (1989) 147.

[41] B. S. Acharya, D. Bailin, A. Love, W. A. Sabra and S. Thomas, Spontaneous breaking of CP symmetry by orbifold moduli, Phys. Lett. B357 (1995) 387 [hep-th/9506143], [Erratum: Phys. Lett.B407,451(1997)]. [OpenAIRE]

[42] T. Dent, CP violation and modular symmetries, Phys. Rev. D64 (2001) 056005 [hep-ph/0105285].

[43] J. Giedt, CP violation and moduli stabilization in heterotic models, Mod. Phys. Lett. A17 (2002) 1465 [hep-ph/0204017]. [OpenAIRE]

[44] R. S. Kulkarni, An Arithmetic-Geometric Method in the Study of the Subgroups of the Modular Group, American Journal of Mathematics 113 (1991) 1053.

19 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue