Time Remains

Article, Preprint English OPEN
Gryb, S.; Thébault, P.;

<p>On one popular view, the general covariance of gravity implies that change is relational in a strong sense, such that all it is for a physical degree of freedom to change is for it to vary with regard to a second physical degree of freedom. At a quantum level, this v... View more
  • References (53)
    53 references, page 1 of 6

    Anderson, E. (2012). `Problem of Time in Quantum Gravity'. Annalen Phys. 524 (arXiv: 1206.2403), pp. 757{86.

    Anderson, E. (2013). `Beables/Observables in Classical and Quantum Gravity'. arXiv preprint arXiv:1312.6073 .

    Anderson, E., J. Barbour, B. Foster, and N. O'Murchadha (2003). `Scale-invariant gravity: Geometrodynamics'. Class. Quant. Grav. 20, p. 1571.

    Anderson, E., J. Barbour, B. Z. Foster, B. Kelleher, and N. O'Murchadha (2005). `The physical gravitational degrees of freedom'. Class. Quant. Grav. 22, pp. 1795{802.

    Arnowitt, R. L., S. Deser, and C. W. Misner (1962). `The dynamics of general relativity'. In Louis Witten (Ed.), Gravitation: an introduction to current research, pp. pp. 227{65. New York: John Wiley & Sons.

    Barbour, J. (2003). `Scale-Invariant Gravity: Particle Dynamics'. Class. Quant. Grav. 20, pp. 1543{70.

    Barbour, J. (2010). `The De nition of Mach's Principle'. Found. Phys. 40, pp. 1263{84.

    Barbour, J. (2012). `Shape dynamics. An introduction'. In Quantum Field Theory and Gravity, pp. pp. 257{97. Basel: Springer.

    Barbour, J. and B. Z. Foster (2008, August). `Constraints and gauge transformations: Dirac's theorem is not always valid'. ArXiv 0808.1223 . ArXiv e-prints.

    Barbour, J., M. Lostaglio, and F. Mercati (2013). `Scale Anomaly as the Origin of Time'. Gen.Rel.Grav. 45, pp. 911{38.

  • Related Organizations (2)
  • Metrics
Share - Bookmark