publication . Article . 2013

Dopamine Signaling in reward-related behaviors

Ja-Hyun eBaik;
Open Access English
  • Published: 01 Oct 2013 Journal: Frontiers in Neural Circuits, volume 7 (issn: 1662-5110, eissn: 1662-5110, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors su...
Subjects
free text keywords: Review Article, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571, Neuroscience, drug addiction, reward circuit, dopamine, dopamine receptor, food reward
171 references, page 1 of 12

Abizaid A. Liu Z. W. Andrews Z. B. Shanabrough M. Borok E. Elsworth J. D. (2006). Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest. 116 3229–3239. 10.1172/JCI29867 [OpenAIRE] [DOI]

Baicy K. London E. D. Monterosso J. Wong M. L. Delibasi T. Sharma A. (2007). Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proc. Natl. Acad. Sci. U.S.A. 104 18276–18279. 10.1073/pnas.0706481104 [OpenAIRE] [DOI]

Baik J. H. Picetti R. Saiardi A. Thiriet G. Dierich A. Depaulis A. (1995). Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377 424–428. 10.1038/377424a0 [DOI]

Baker D. A. Fuchs R. A. Specio S. E. Khroyan T. V. Neisewander J. L. (1998). Effects of intraaccumbens administration of SCH-23390 on cocaine-induced locomotion and conditioned place preference. Synapse 30 181–193.10.1002/(SICI)1098-2396(199810)30:2<181::AID-SYN8>3.0.CO;2-8 [DOI]

Baker D. A. Khroyan T. V. O’Dell L. E. Fuchs R. A. Neisewander J. L. (1996). Differential effects of intra-accumbenssulpiride on cocaine-induced locomotion and conditioned place preference. J. Pharmacol. Exp. Ther. 279 392–401.

Baldo B. A. Sadeghian K. Basso A. M. Kelley A. E. (2002). Effects of se lective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav. Brain Res. 137 165–177 10.1016/S0166-4328(02)00293-0 [DOI]

Bassareo V Di Chiara G. (1997). Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J. Neurosci. 17 851–861. [OpenAIRE]

Bateup H. S. (2010). Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc. Natl. Acad. Sci. U.S.A. 107 14845–14850. 10.1073/pnas.1009874107 [OpenAIRE] [DOI]

Bateup H. S. Svenningsson P. Kuroiwa M. Gong S. Nishi A. Heintz N. (2008). Cell ty pe-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat. Neurosci. 11 932–939. 10.1038/nn.2153 [OpenAIRE] [DOI]

Beaulieu J. M. Gainetdinov R. R. (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63 182–217. 10.1124/pr.110.002642 [DOI]

Bello E. P. Mateo Y. Gelman D. M. Noaïn D. Shin J. H. Low M. J. (2011). Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D(2) autoreceptors. Nat. Neurosci. 14 1033–1038. 10.1038/nn.2862 [OpenAIRE] [DOI]

Beom S. Cheong D. Torres G. Caron M. G. Kim K. M. (2004). Comparative studies of molecular mechanisms of dopamine D2 and D3 receptors for the activation of extracellular signal-regulated kinase. J. Biol. Chem. 279 28304–28314. 10.1074/jbc.M403899200 [DOI]

Berridge K. C. Robinson T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 28 309–369. 10.1016/S0165-0173(98)00019-8 [DOI]

Beyer C. E. Steketee J. D. (2002). Cocaine sensitization: modulation by dopamine D2 receptors. Cereb. Cortex 12 526–535. 10.1093/cercor/12.5.526 [DOI]

Bock R. Shin J. H. Kaplan A. R. Dobi A. Markey E. Kramer P. F. (2013). Strenghtening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat. Neurosci. 16 632–638. 10.1038/nn.3369 [OpenAIRE] [DOI]

171 references, page 1 of 12
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2013

Dopamine Signaling in reward-related behaviors

Ja-Hyun eBaik;