Free Boundary Regularity for Almost-Minimizers

Preprint English OPEN
David, Guy; Engelstein, Max; Toro, Tatiana; (2017)
  • Publisher: HAL CCSD
  • Subject: Alt-Caffarelli-Friedman functional | Free boundary problems | [ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] | Mathematics - Analysis of PDEs | 35R35

70 pages. Comments welcome; In this paper we study the free boundary regularity for almost-minimizers of the functional \begin{equation*} J(u)=\int_{\mathcal O} |\nabla u(x)|^2 +q^2_+(x)\chi_{\{u>0\}}(x) +q^2_-(x)\chi_{\{u<0\}}(x)\ dx \end{equation*} where $q_\pm \in L^... View more
  • References (32)
    32 references, page 1 of 4

    [ACS] N.E. Aguilera, L. A. Caffarelli & J. Spruck, An optimization problem in heat conduction, Ann. Scuola Norm. Sup. Pisa 14(1987), 355-387.

    [Alm1] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Amer. Math. Soc., 165 (1976), viii+199.

    [Alm2] F. J. Almgren, Jr. Almgren's big regularity paper, volume 1 of World Scientific Monograph Series in Mathematics. World Scientific Publishing Co. Inc., River Edge, NJ, 2000.

    [AC] H. W. Alt & L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105-144.

    [ACF] H. W. Alt, L. A. Caffarelli & A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc. 282 (1984), 431-461.

    [CJK] L. A. Caffarelli, D. Jerison & C. Kenig, Global energy minimizers for free boundary problems and full regularity in three dimensions. Non-compact problems at the intersection of geometry, analysis, and topology, 83-97, Contemp. Math., 350, Amer. Math. Soc., Providence, RI, 2004.

    [CK] L. A. Caffarelli & C. Kenig, Gradient Estimates for Variable Coefficient Parabolic Equations and Singular Perturbation Problems. Am. J. Math. 120 (1998) 391-439.

    [CSY] L. A. Caffarelli, H. Shahgholian & K. Yeressian, A minimization problem with free boundary related to a cooperative system. Preprint arXiv: 1608.07689 (2016).

    [D1] G. David, Morceaux de graphes lipschitziens et int´egrales singuli`eres sur une surface. Rev. Mat. Iberoamericana 4 (1988), no. 1, 73-114.

    [D2] G. David, Singular sets of minimizers for the Mumford-Shah functional. Progress in Mathematics, 233. Birkh¨auser Verlag, Basel, 2005. xiv+581 pp.

  • Metrics
    No metrics available