High permeability explains the vulnerability of the carbon store in drained tropical peatlands
- Published: 16 Feb 2017 Journal: Geophysical Research Letters, volume 44, pages 1,333-1,339 (issn: 0094-8276, eissn: 1944-8007,
Copyright policy)
- Publisher: American Geophysical Union (AGU)
- Country: United Kingdom
- SI - Smithsonian Tropical Research Institute Panama
- University of Leicester United Kingdom
- University of Leeds United Kingdom
- Funder: Research Council UK (RCUK)
- Project Code: ES/I903038/1
- Funding stream: ESRC
- 1
- 2
Anderson, J. A. R. (1983), Tropical peat swamps of western Malesia, in Mires: Swamp, Bog, Fen, and Moor, edited by A. J. P. Gore, pp. 181-199, Elsevier, Amsterdam.
Baird, A. J., B. W. J. Surridge, and R. P. Money (2004), An assessment of the piezometer method for measuring the hydraulic conductivity of a Cladium mariscus-Phragmites australis root mat in a Norfolk (UK) fen, Hydrol. Process., 18, 275-291.
Baird, A. J., P. J. Morris, and L. R. Belyea (2012), The DigiBog peatland development model 1: Rationale, conceptual model, and hydrological basis, Ecohydrology, 5, 242-255, doi:10.1002/eco.230.
Baird, A. J., A. M. Milner, A. Blundell, G. T. Swindles, and P. J. Morris (2016), Microform-scale variations in peatland permeability and their ecohydrological implications, J. Ecol., 104, 531-544, doi:10.1111/1365-2745.12530.
Binley, A., K. Beven, and J. Elgy (1989), Physically based model of heterogeneous hillslopes 2. Effective hydraulic conductivities, Water Resour. Res., 25, 1227-1233, doi:10.1029/WR025i006p01227. [OpenAIRE]
Brady, M. A. (1997), Organic material dynamics of coastal peat deposits in Sumatra, Indonesia, PhD thesis, Univ. of British Columbia, Canada.
Butler, J. J., Jr. (1998), The Design, Performance, and Analysis of Slug Tests, pp. 252, Lewis, Boca Raton, Fla.
Chadwick, R., P. Good, G. Martin, and D. P. Rowell (2015), Large rainfall changes consistently projected over substantial areas of tropical land, Nat. Clim. Change, 6, 177-181, doi:10.1038/nclimate2805.
Chimner, R. A., and K. C. A. Ewel (2005), A tropical freshwater wetland: II. Production, decomposition, and peat formation, Wetl. Ecol. Manag., 13, 671-684. [OpenAIRE]
Corlett, R. T. (2016), The impacts of droughts in tropical forests, Trends Plant Sci., 21, 584-593, doi:10.1016/j.tplants.2016.02.003. [OpenAIRE]
Couwenberg, J., R. Dommain, and H. Joosten (2010), Greenhouse gas fluxes from tropical peatlands in south-east Asia, Global Change Biol., 16, 1715-1732, doi:10.1111/j.1365-2486.2009.02016.x. [OpenAIRE]
den Haan, E. J., A. Hooijer, and G. Erkens (2012), Consolidation Settlements [sic] of Tropical Peat Domes by Plantation Development, Deltares, Delft, Netherlands.
Domenico, P. A., and F. W. Schwartz (1990), Physical and Chemical Hydrogeology, pp. 824, Wiley, New York.
Dommain, R., J. Couwenberg, and H. Joosten (2010), Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration, in Mires and Peat, vol. 6 5, pp. 1-17. [OpenAIRE]
Fábrega, J., T. Nakaegawa, R. Pinzón, and K. Nakayama (2013), Hydroclimate projections for Panama in the late 21st century, Hydrol. Res. Lett., 7, 23-29.
- 1
- 2
- SI - Smithsonian Tropical Research Institute Panama
- University of Leicester United Kingdom
- University of Leeds United Kingdom
- Funder: Research Council UK (RCUK)
- Project Code: ES/I903038/1
- Funding stream: ESRC
- 1
- 2
Anderson, J. A. R. (1983), Tropical peat swamps of western Malesia, in Mires: Swamp, Bog, Fen, and Moor, edited by A. J. P. Gore, pp. 181-199, Elsevier, Amsterdam.
Baird, A. J., B. W. J. Surridge, and R. P. Money (2004), An assessment of the piezometer method for measuring the hydraulic conductivity of a Cladium mariscus-Phragmites australis root mat in a Norfolk (UK) fen, Hydrol. Process., 18, 275-291.
Baird, A. J., P. J. Morris, and L. R. Belyea (2012), The DigiBog peatland development model 1: Rationale, conceptual model, and hydrological basis, Ecohydrology, 5, 242-255, doi:10.1002/eco.230.
Baird, A. J., A. M. Milner, A. Blundell, G. T. Swindles, and P. J. Morris (2016), Microform-scale variations in peatland permeability and their ecohydrological implications, J. Ecol., 104, 531-544, doi:10.1111/1365-2745.12530.
Binley, A., K. Beven, and J. Elgy (1989), Physically based model of heterogeneous hillslopes 2. Effective hydraulic conductivities, Water Resour. Res., 25, 1227-1233, doi:10.1029/WR025i006p01227. [OpenAIRE]
Brady, M. A. (1997), Organic material dynamics of coastal peat deposits in Sumatra, Indonesia, PhD thesis, Univ. of British Columbia, Canada.
Butler, J. J., Jr. (1998), The Design, Performance, and Analysis of Slug Tests, pp. 252, Lewis, Boca Raton, Fla.
Chadwick, R., P. Good, G. Martin, and D. P. Rowell (2015), Large rainfall changes consistently projected over substantial areas of tropical land, Nat. Clim. Change, 6, 177-181, doi:10.1038/nclimate2805.
Chimner, R. A., and K. C. A. Ewel (2005), A tropical freshwater wetland: II. Production, decomposition, and peat formation, Wetl. Ecol. Manag., 13, 671-684. [OpenAIRE]
Corlett, R. T. (2016), The impacts of droughts in tropical forests, Trends Plant Sci., 21, 584-593, doi:10.1016/j.tplants.2016.02.003. [OpenAIRE]
Couwenberg, J., R. Dommain, and H. Joosten (2010), Greenhouse gas fluxes from tropical peatlands in south-east Asia, Global Change Biol., 16, 1715-1732, doi:10.1111/j.1365-2486.2009.02016.x. [OpenAIRE]
den Haan, E. J., A. Hooijer, and G. Erkens (2012), Consolidation Settlements [sic] of Tropical Peat Domes by Plantation Development, Deltares, Delft, Netherlands.
Domenico, P. A., and F. W. Schwartz (1990), Physical and Chemical Hydrogeology, pp. 824, Wiley, New York.
Dommain, R., J. Couwenberg, and H. Joosten (2010), Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration, in Mires and Peat, vol. 6 5, pp. 1-17. [OpenAIRE]
Fábrega, J., T. Nakaegawa, R. Pinzón, and K. Nakayama (2013), Hydroclimate projections for Panama in the late 21st century, Hydrol. Res. Lett., 7, 23-29.
- 1
- 2