On an Inequality of H. G. Hardy

Article English OPEN
Sajid Iqbal; Kristina Krulić; Josip Pečarić;

<p/> <p>We state, prove, and discuss new general inequality for convex and increasing functions. As a special case of that general result, we obtain new fractional inequalities involving fractional integrals and derivatives of Riemann-Liouville type. Consequently, we ge... View more
  • References (5)

    1 G. A. Anastassiou, Fractional Differentiation Inequalities, Springer Science Businness Media, LLC, Dordrecht, the Netherlands, 2009.

    2 G. D. Handley, J. J. Koliha, and J. Pecˇari c´, “Hilbert-Pachpatte type integral inequalities for fractional derivatives,” Fractional Calculus & Applied Analysis, vol. 4, no. 1, pp. 37-46, 2001.

    3 A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, New York, NY, USA, 2006.

    4 S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integral and Derivatives : Theory and Applications, Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993.

    5 H.G. Hardy, “Notes on some points in the integral calculus,” Messenger of Mathematics, vol. 47, no. 10, pp. 145-150, 1918.

  • Related Organizations (3)
  • Metrics
Share - Bookmark