publication . Preprint . Other literature type . 2019

Human caspase-1 autoproteolysis is required for ASC-dependent and -independent inflammasome activation

Daniel P. Ball; Darren C. Johnson; Daniel A. Bachovchin; Daniel A. Bachovchin; Cornelius Y. Taabazuing; Ilana B. Kotliar; Elizabeth L. Orth; Andrew R. Griswold; Sahana D. Rao;
Open Access English
  • Published: 24 Jun 2019
  • Publisher: Cold Spring Harbor Laboratory
<jats:title>Abstract</jats:title><jats:p>Pathogen-related signals induce a number of cytosolic pattern-recognition receptors (PRRs) to form canonical inflammasomes, which activate pro-caspase-1 and trigger pyroptotic cell death. All well-studied PRRs oligomerize with the pro-caspase-1-adapter protein ASC to generate a single large structure in the cytosol, which induces the autoproteolysis and activation of the pro-caspase-1 zymogen. However, several PRRs can also directly interact with pro-caspase-1 without ASC, forming much smaller “ASC-independent” inflammasomes. It is currently thought that pro-caspase-1 autoproteolysis does not occur during, and is not requ...
Medical Subject Headings: animal diseases
free text keywords: Receptor, Programmed cell death, Chemistry, Inflammasome, medicine.drug, medicine, Cell biology, NLRP1, Zymogen, Pyroptosis, Cytosol, Caspase 1
Related Organizations
Funded by
NIH| Weill Cornell/Rockefeller/Sloan-Kettering MST Program
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5T32GM007739-30
  • Funder: National Institutes of Health (NIH)
  • Project Code: 2P30CA008748-43
NIH| Characterizing the Mechanism of DPP8/9 Inhibitor-Induced Pyroptosis
  • Funder: National Institutes of Health (NIH)
  • Project Code: 1R01AI137168-01
33 references, page 1 of 3

Boucher, D., M. Monteleone, R.C. Coll, K.W. Chen, C.M. Ross, J.L. Teo, G.A. Gomez, C.L. Holley, D. Bierschenk, K.J. Stacey, A.S. Yap, J.S. Bezbradica, and K. Schroder. 2018. Caspase-1 selfcleavage is an intrinsic mechanism to terminate inflammasome activity. J. Exp. Med. 215:827-840.

Broz, P., and V.M. Dixit. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16:407-420. [OpenAIRE]

Broz, P., K. Newton, M. Lamkanfi, S. Mariathasan, V.M. Dixit, and D.M. Monack. 2010a. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207:1745-1755. [OpenAIRE]

Broz, P., J. von Moltke, J.W. Jones, R.E. Vance, and D.M. Monack. 2010b. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8:471-483.

Chavarria-Smith, J., P.S. Mitchell, A.M. Ho, M.D. Daugherty, and R.E. Vance. 2016. Functional and Evolutionary Analyses Identify Proteolysis as a General Mechanism for NLRP1 Inflammasome Activation. PLoS Pathog. 12:e1006052.

Chui, A.J., M.C. Okondo, S.D. Rao, K. Gai, A.R. Griswold, D.C. Johnson, D.P. Ball, C.Y. Taabazuing, E.L. Orth, B.A. Vittimberga, and D.A. Bachovchin. 2019. N-terminal degradation activates the NLRP1B inflammasome. Science 364:82-85.

D'Osualdo, A., C.X. Weichenberger, R.N. Wagner, A. Godzik, J. Wooley, and J.C. Reed. 2011. CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain. PLoS One 6:e27396.

Dixon, A.S., M.K. Schwinn, M.P. Hall, K. Zimmerman, P. Otto, T.H. Lubben, B.L. Butler, B.F. Binkowski, T. Machleidt, T.A. Kirkland, M.G. Wood, C.T. Eggers, L.P. Encell, and K.V. Wood. 2016. NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS Chem. Biol. 11:400-408.

Finger, J.N., J.D. Lich, L.C. Dare, M.N. Cook, K.K. Brown, C. Duraiswami, J. Bertin, and P.J. Gough. 2012. Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J. Biol. Chem. 287:25030-25037.

Frew, B.C., V.R. Joag, and J. Mogridge. 2012. Proteolytic processing of Nlrp1b is required for inflammasome activity. PLoS Pathog. 8:e1002659. [OpenAIRE]

Guey, B., M. Bodnar, S.N. Manie, A. Tardivel, and V. Petrilli. 2014. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc. Natl. Acad. Sci. U. S. A. 111:17254-17259.

Hagar, J.A., D.A. Powell, Y. Aachoui, R.K. Ernst, and E.A. Miao. 2013. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250-1253.

He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, Z.H. Yang, C.Q. Zhong, and J. Han. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 25:1285-1298. [OpenAIRE]

Johnson, D.C., C.Y. Taabazuing, M.C. Okondo, A.J. Chui, S.D. Rao, F.C. Brown, C. Reed, E. Peguero, E. de Stanchina, A. Kentsis, and D.A. Bachovchin. 2018. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 24:1151-1156. [OpenAIRE]

Jones, J.W., N. Kayagaki, P. Broz, T. Henry, K. Newton, K. O'Rourke, S. Chan, J. Dong, Y. Qu, M. Roose-Girma, V.M. Dixit, and D.M. Monack. 2010. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl. Acad. Sci. U. S. A. 107:9771-9776.

33 references, page 1 of 3
Any information missing or wrong?Report an Issue