Laguerre derivative and monogenic Laguerre polynomials: An operational approach

Article English OPEN
Cação, I.; Falcão, M.I.; Malonek, H.R.; (2011)
  • Publisher: Elsevier BV
  • Journal: Mathematical and Computer Modelling,volume 53,issue 5-6,pages1,084-1,094 (issn: 0895-7177)
  • Related identifiers: doi: 10.1016/j.mcm.2010.11.071
  • Subject: Functions of hypercomplex variables | Science & Technology | Generalized Laguerre polynomials | Exponential operators | Computer Science Applications | Modelling and Simulation
    arxiv: Mathematics::Complex Variables

Hypercomplex function theory generalizes the theory of holomorphic functions of one complex variable by using Clifford Algebras and provides the fundamentals of Clifford Analysis as a refinement of Harmonic Analysis in higher dimensions. We define the Laguerre ... View more
  • References (26)
    26 references, page 1 of 3

    [1] F. Brackx, R. Delanghe, F. Sommen, Cli ord analysis, Pitman, Boston-London-Melbourne, 1982.

    [2] K. Gurlebeck, K. Habetha, W. Spro ig, Holomorphic functions in the plane and n-dimensional space, Birkhauser Verlag, Basel, 2008.

    [3] M. I. Falc~ao, H. R. Malonek, Generalized exponentials through Appell sets in Rn+1 and Bessel functions., in: T. E. Simos, G. Psihoyios, C. Tsitouras (Eds.), AIP Conference Proceedings, Vol. 936, 2007, pp. 738{741.

    [4] H. R. Malonek, M. I. Falc~ao, Special monogenic polynomials|properties and applications, in: T. E. Simos, G. Psihoyios, C. Tsitouras (Eds.), AIP Conference Proceedings, Vol. 936, 2007, pp. 764{767.

    [5] I. Cac~ao, H. Malonek, On complete sets of hypercomplex Appell polynomials, in: T. E. Simos, G. Psihoyios, C. Tsitouras (Eds.), AIP Conference Proceedings, Vol. 1048, 2008, pp. 647{650.

    [6] S. Bock, K. Gurlebeck, On a generalized Appell system and monogenic power series, Math. Methods Appl. Sci. 33 (4) (2010) 394{411.

    [7] R. Lavicka, Canonical bases for sl(2,c)-modules of spherical monogenics in dimension 3 (2010) arXiv:1003.5587v1.

    [8] F. Brackx, The exponential function of a quaternion variable, Applicable Anal. 8 (3) (1978/79) 265{276.

    [9] F. Sommen, A product and an exponential function in hypercomplex function theory, Appl. Anal. 12 (1981) 13{26.

    [10] W. Sprossig, On operators and elementary functions in Cli ord analysis, Journal for Analysis and its Applications 18 (2) (1999) 349{360.

  • Metrics
    0
    views in OpenAIRE
    3
    views in local repository
    3
    downloads in local repository

    The information is available from the following content providers:

    FromNumber Of ViewsNumber Of Downloads
    Universidade do Minho: RepositoriUM 3 3
Share - Bookmark