Polyhedral combinatorics of UPGMA cones

Article, Preprint English OPEN
Davidson, Ruth; Sullivant, Seth;
  • Publisher: Elsevier BV
  • Journal: Advances in Applied Mathematics,volume 50,issue 2,pages327-338 (issn: 0196-8858)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1016/j.aam.2012.10.002
  • Subject: Applied Mathematics | Mathematics - Combinatorics | 92D15, 52B05, 90C57, 05C07, 06A07 | Quantitative Biology - Populations and Evolution | Quantitative Biology - Quantitative Methods

Distance-based methods such as UPGMA (Unweighted Pair Group Method with Arithmetic Mean) continue to play a significant role in phylogenetic research. We use polyhedral combinatorics to analyze the natural subdivision of the positive orthant induced by classifying the i... View more
  • References (11)
    11 references, page 1 of 2

    [1] David Aldous. Stochastic Models and Descriptive Statistics for Phylogenetic Trees, from Yule to Today. Statistical Science 16(2001): 23-34.

    [2] R. Davidson and S. Sullivant. Supplementary Materials for "Polyhedral Combinatorics of UPGMA Cones." [http://http://www4.ncsu.edu/ smsulli2/Pubs/UPGMACones/UPGMACones.html]

    [3] Kord Eickmeyer, Peter Huggins, Lior Pachter, and Ruriko Yoshida. On the Optimality of the Neighbor-Joining Algorithm. Algorithms for Molecular Biology 3 (2008)

    [4] C. Fahey, S. Hosten, N. Krieger, L. Timpe. Least squares methods for equidistant tree reconstruction, 2008 arXiv:0808.3979

    [5] J. Felsenstein. Inferring Phylogenies. 2nd Edition. Sinauer Associates, 2003.

    [6] Ewgenij Gawrilow and Michael Joswig. Polymake: a framework for analyzing convex polytopes. Polytopes-combinatorics and computation (Oberwolfach, 1997), 43-73, DMV Sem., 29, Birkhauser, Basel, 2000. MR1785292 (2001f:52033).

    [7] P. Huggins. NJBMEVolume: Software for computing volumes. 2008 [http://bio.math.berkeley.edu/NJBME].

    [8] C. Semple and M. Steel. Phylogenetics. Oxford: Oxford University Press, 2003.

    [9] R.R. Sokal and P.H.A. Sneath. Numerical Taxonomy. W.H. Freeman, San Francisco, 1963.

    [10] R. Stanley. Enumerative Combinatorics Volume I. Cambridge University Press, 1997.

  • Related Organizations (1)
  • Metrics
Share - Bookmark