publication . Other literature type . Article . 2015

Evaluation of Interpolants in Their Ability to Fit Seismometric Time Series

Basu, Kanadpriya; Mariani, Maria; Serpa, Laura; Sinha, Ritwik;
Open Access English
  • Published: 01 Aug 2015 Journal: Mathematics (issn: 2227-7390, Copyright policy)
  • Publisher: MDPI AG
Abstract
This article is devoted to the study of the ASARCO demolition seismic data. Two different classes of modeling techniques are explored: First, mathematical interpolation methods and second statistical smoothing approaches for curve fitting. We estimate the characteristic parameters of the propagation medium for seismic waves with multiple mathematical and statistical techniques, and provide the relative advantages of each approach to address fitting of such data. We conclude that mathematical interpolation techniques and statistical curve fitting techniques complement each other and can add value to the study of one dimensional time series seismographic data: the...
Subjects
free text keywords: statistical smoothing, spline smoothing, Mathematics, interpolation methods, loess methods, geophysics, seismic data, QA1-939

1. Mariani, M.C.; Florescu, I.; Sengupta, I.; Beccar Varela, M.P.; Bezdek, P.; Serpa, L. Lévy models and scale invariance properties applied to Geophysics. Phys. A Stat. Mech. Appl. 2013, 392, 824-839.

2. Habtemicael, S.; SenGupta, I. Ornstein-Uhlenbeck processes for geophysical data analysis, Phys. A Stat. Mech. Appl. 2014, 399, 147-156.

3. Mariani, M.C.; Basu, K. Local regression type methods applied to the study of geophysics and high frequency financial data. Phys. A Statist. Mech. Appl. 2014, 410, 609-622.

4. Mariani, M.C.; Basu, K. Spline interpolation techniques applied to the study of geophysical data. Phys. A Stat. Mech. Appl. 2015, doi: 10.1016/j.physa.2015.02.014.

5. Philips, G. Interpolation and Approximation by Polynomials; Springer-Verlag: New York, NY, USA, 2003.

6. Meng, T.; Geng, H. Error Analysis of Rational Interpolating Spline. Int. J. Math. Anal. 2011, 5, 1287-1294.

7. Peisker, P. A Multilevel Algorithm for the Biharmonic Problem. Numer. Math. 1985, 46, 623-634.

8. Cleveland, W.S.; Grosse, E.; Shyu, W.M. Local regression models. In Statistical Models in S; Wadsworth and Brooks/Cole: Pacific Grove, CA, USA, 1992; pp. 309-376.

9. Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J. Am. Stat. Assoc. 1988, 83, 596-610.

10. Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979, 74, 829-836.

11. Hastie, T.; Friedman, J.; Tibshirani, R. The Elements of Statistical Learning, 2nd ed.; Springer-Verlag: New York, NY, USA, 2009.

12. Green, P.J.; Silverman, B.W. Nonparametric Regression and Generalized Linear Models: A Rough. Penal. Approach; CRC Press: Boca Raton, FL, USA, 1993.

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Other literature type . Article . 2015

Evaluation of Interpolants in Their Ability to Fit Seismometric Time Series

Basu, Kanadpriya; Mariani, Maria; Serpa, Laura; Sinha, Ritwik;