publication . Article . Preprint . 2017

Complex Langevin simulations of a finite density matrix model for QCD

Bloch, Jacques; Glesaaen, Jonas; Philipsen, Owe; Verbaarschot, Jacobus; Zafeiropoulos, Savvas;
Open Access English
  • Published: 22 Mar 2017 Journal: EPJ Web of Conferences (issn: 2100-014X, Copyright policy)
  • Publisher: EDP Sciences
  • Country: Germany
Abstract
We study a random matrix model for QCD at finite density via complex Langevin dynamics. This model has a phase transition to a phase with nonzero baryon density. We study the convergence of the algorithm as a function of the quark mass and the chemical potential and focus on two main observables: the baryon density and the chiral condensate. For simulations close to the chiral limit, the algorithm has wrong convergence properties when the quark mass is in the spectral domain of the Dirac operator. A possible solution of this problem is discussed.
Subjects
arXiv: High Energy Physics::PhenomenologyHigh Energy Physics::Lattice
free text keywords: Physics, QC1-999, High Energy Physics - Lattice, ddc:530
26 references, page 1 of 2

[1] O. Philipsen, in Modern perspectives in lattice QCD: Quantum field theory and high performance computing. Proceedings, International School, 93rd Session, Les Houches, France, August 3- 28, 2009, p. 273, L. Lellouch, R. Sommer, B. Svetitsky, A.Vladikas and L. Cugliandolo (eds.), Oxford University Press (2011) [arxiv:1009.4089].

[2] G. Parisi, Phys. Lett. 131B, 393 (1983).

[3] J. R. Klauder, Acta Phys. Austriaca Suppl. 25, 251 (1983).

[4] P. H. Damgaard and H. Huffel, Phys. Rept. 152, 227 (1987).

[5] G. Aarts, F. A. James, E. Seiler and I. O. Stamatescu, Eur. Phys. J. C 71, 1756 (2011).

[6] G. Aarts, E. Seiler and I. O. Stamatescu, Phys. Rev. D 81, 054508 (2010).

[7] E. Seiler, D. Sexty and I. O. Stamatescu, Phys. Lett. B 723, 213 (2013).

[8] D. Sexty, Phys. Lett. B 729, 108 (2014).

[9] J. Bloch, J. Mahr and S. Schmalzbauer, PoS LATTICE2015 (2016) 158.

[10] M. A. Stephanov, Phys. Rev. Lett. 76, 4472 (1996).

[11] A. Mollgaard and K. Splittorff, Phys. Rev. D 88, no. 11, 116007 (2013).

[12] A. Mollgaard and K. Splittorff, Phys. Rev. D 91, no. 3, 036007 (2015).

[13] K. Nagata, J. Nishimura and S. Shimasaki, JHEP 1607, 073 (2016).

[14] J. C. Osborn, Phys. Rev. Lett. 93, 222001 (2004).

[15] J. Bloch, F. Bruckmann, M. Kieburg, K. Splittorff and J. J. M. Verbaarschot, Phys. Rev. D 87, 034510 (2013).

26 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue