publication . Article . 2015

Small RNAs in plants: recent development and application for crop improvement

Ayushi eKamthan; Abira eChaudhuri; Mohan eKamthan; Asis eDatta;
Open Access English
  • Published: 01 Apr 2015 Journal: Frontiers in Plant Science, volume 6 (issn: 1664-462X, eissn: 1664-462X, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It...
Subjects
mesheuropmc: food and beveragesfungi
free text keywords: RNAi, Plant culture, SB1-1110, Review, gene silencing, miRNA, siRNA, Plant Science, crop improvement
218 references, page 1 of 15

Achard P. Herr A. Baulcombe D. C. Harberd N. P. (2004). Modulation of floral development by gibberellin-regulated microRNA. Development 131 3357–3365. 10.1242/dev.01206 [DOI]

Ai T. Zhang L. Gao Z. Zhu C. X. Guo X. (2011). Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol. 13 304–316. 10.1111/j.1438-8677.2010.00374.x [DOI]

Andika I. B. Kondo H. Tamada T. (2005). Evidenc e that RNA silencing-mediated resistance to beet necrotic yellow vein virus is less effective in roots than in leaves. Mol. Plant Microbe Interact. 18 194–204. 10.1094/MPMI-18-0194 [DOI]

Angaji S. A. Hedayati S. S. Hosein poor R. Samad poor S. Shiravi S. Madani S. (2010). Application of RNA interference in plants. Plant Omics J. 3 77–84.

Astwood J. D. Leach J. N. Fuchs R. L. (1996). Stability of food allergens to digestion in vitro. Nat. Biotechnol. 14 1269–1273. 10.1038/nbt1096-1269 [DOI]

Aukerman M. J. Sakai H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its AP ETALA2-like target genes. Plant Cell 15 2730–2741. 10.1105/tpc.016238 [OpenAIRE] [DOI]

Axtell M. J. (2013). Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64 137–159. 10.1146/annurev-arplant-050312-120043 [DOI]

Bao N. Lye K. W. Barton M. K. (2004). MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7 653–662. 10.1016/j.devcel.2004.10.003 [OpenAIRE] [DOI]

Bartel D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. C ell 116 281–297. 10.1016/S0092-8674(04)00045-5 [OpenAIRE] [DOI]

Baulcombe D. (2000). Unwinding RNA silencing. Science 290 1108–1109. 10.1126/science.290.5494.1108 [DOI]

Baum J. A. Bogaert T. Clinton W. Heck G. R. Feldmann P. Ilagan O. (2007). Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25 1322–1326. 10.1038/nbt1359 [DOI]

Beclin C. Boutet S. Waterhouse P. Vaucheret H. (2002). A branched pathway for transgene-induced RNA silencing in plants. Curr. Biol. 12 684–688. 10.1016/S0960-9822(02)00792-3 [OpenAIRE] [DOI]

Bernstein E. Caudy A. A. Hammond S. M. Hannon G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409 363–366. 10.1038/35053110 [DOI]

Bonfim K. Faria J. C. Nogueira E. O. Mendes E. A. Aragao F. J. (2007). RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol. Plant Microbe Interact. 20 717–726. 10.1094/MPMI-20-6-0717 [DOI]

Bouche N. Lauressergues D. Gasciolli V. Vaucheret H. (2006). An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 25 3347–3356. 10.1038/sj.emboj.7601217 [OpenAIRE] [DOI]

218 references, page 1 of 15
Abstract
The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It...
Subjects
mesheuropmc: food and beveragesfungi
free text keywords: RNAi, Plant culture, SB1-1110, Review, gene silencing, miRNA, siRNA, Plant Science, crop improvement
218 references, page 1 of 15

Achard P. Herr A. Baulcombe D. C. Harberd N. P. (2004). Modulation of floral development by gibberellin-regulated microRNA. Development 131 3357–3365. 10.1242/dev.01206 [DOI]

Ai T. Zhang L. Gao Z. Zhu C. X. Guo X. (2011). Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol. 13 304–316. 10.1111/j.1438-8677.2010.00374.x [DOI]

Andika I. B. Kondo H. Tamada T. (2005). Evidenc e that RNA silencing-mediated resistance to beet necrotic yellow vein virus is less effective in roots than in leaves. Mol. Plant Microbe Interact. 18 194–204. 10.1094/MPMI-18-0194 [DOI]

Angaji S. A. Hedayati S. S. Hosein poor R. Samad poor S. Shiravi S. Madani S. (2010). Application of RNA interference in plants. Plant Omics J. 3 77–84.

Astwood J. D. Leach J. N. Fuchs R. L. (1996). Stability of food allergens to digestion in vitro. Nat. Biotechnol. 14 1269–1273. 10.1038/nbt1096-1269 [DOI]

Aukerman M. J. Sakai H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its AP ETALA2-like target genes. Plant Cell 15 2730–2741. 10.1105/tpc.016238 [OpenAIRE] [DOI]

Axtell M. J. (2013). Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64 137–159. 10.1146/annurev-arplant-050312-120043 [DOI]

Bao N. Lye K. W. Barton M. K. (2004). MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7 653–662. 10.1016/j.devcel.2004.10.003 [OpenAIRE] [DOI]

Bartel D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. C ell 116 281–297. 10.1016/S0092-8674(04)00045-5 [OpenAIRE] [DOI]

Baulcombe D. (2000). Unwinding RNA silencing. Science 290 1108–1109. 10.1126/science.290.5494.1108 [DOI]

Baum J. A. Bogaert T. Clinton W. Heck G. R. Feldmann P. Ilagan O. (2007). Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25 1322–1326. 10.1038/nbt1359 [DOI]

Beclin C. Boutet S. Waterhouse P. Vaucheret H. (2002). A branched pathway for transgene-induced RNA silencing in plants. Curr. Biol. 12 684–688. 10.1016/S0960-9822(02)00792-3 [OpenAIRE] [DOI]

Bernstein E. Caudy A. A. Hammond S. M. Hannon G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409 363–366. 10.1038/35053110 [DOI]

Bonfim K. Faria J. C. Nogueira E. O. Mendes E. A. Aragao F. J. (2007). RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol. Plant Microbe Interact. 20 717–726. 10.1094/MPMI-20-6-0717 [DOI]

Bouche N. Lauressergues D. Gasciolli V. Vaucheret H. (2006). An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 25 3347–3356. 10.1038/sj.emboj.7601217 [OpenAIRE] [DOI]

218 references, page 1 of 15
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2015

Small RNAs in plants: recent development and application for crop improvement

Ayushi eKamthan; Abira eChaudhuri; Mohan eKamthan; Asis eDatta;