Liouville quantum gravity on the unit disk

Preprint, Other literature type English OPEN
Huang, Yichao; Rhodes, Rémi; Vargas, Vincent;
  • Publisher: Institut Henri Poincaré
  • Journal: issn: 0246-0203
  • Publisher copyright policies & self-archiving
  • Identifiers: doi: 10.1214/17-AIHP852
  • Subject: KPZ formula | Gaussian multiplicative chaos | Polyakov formula | Mathematical Physics | Gaussian multiplica-tive chaos | 60D05, 30F10, 81T40, 81T20 | KPZ scaling laws | Conformal anomaly | Liouville Quantum Gravity | Mathematics - Differential Geometry | [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] | 81T20 | [MATH.MATH-PR]Mathematics [math]/Probability [math.PR] | Mathematics - Probability | Quantum field theory | 60D05; 81T40; 81T20 | 81T40 | 60D05

Our purpose is to pursue the rigorous construction of Liouville Quantum Field Theory on Riemann surfaces initiated by F. David, A. Kupiainen and the last two authors in the context of the Riemann sphere and inspired by the 1981 seminal work by Polyakov. In this paper, w... View more
  • References (8)

    [1] Acosta J.: Tightness of the recentered maximum of log-correlated Gaussian fields, Electron. J. Probab. 19 (2014), no. 90, 1?5.

    [2] Ayache, A., Xiao, Y.: Asymptotic Properties and Hausdorff dimensions of Fractional Brownian Sheets, Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets. Journal of Fourier Analysis and Applications, (2005), 11(4), 407-439.

    [3] Allez R., Rhodes R., Vargas V.: Lognormal ⋆-scale invariant random measures, Probability Theory and Related Fields, 2013, vol 155, issue 3-4, 751-788.

    [4] Bouttier J. Guitter E.: Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop, J. Phys. A 42 (2009), 465208.

    [25] Rhodes, R. Vargas, V.: KPZ formula for log-infinitely divisible multifractal random measures, ESAIM Probability and Statistics, 15 (2011) 358.

    [27] Robert R. and Vargas V.: Gaussian multiplicative chaos revisited, Ann. Probab. 38 605-631 (2010).

    [28] Shamov A.: On Gaussian multiplicative chaos, arXiv:1407.4418.

    [29] Sheffield S.: Gaussian free fields for mathematicians, Probab. Th. Rel. Fields, 139 (2007) 521-541.

  • Metrics
Share - Bookmark