publication . Article . 2016

Molecular basis for functional switching of GFP by two disparate non-native post-translational modifications of a phenyl azide reaction handle.

Andrew M. Hartley; Harley L. Worthy; Samuel C. Reddington; Pierre J. Rizkallah; D. Dafydd Jones;
Open Access
  • Published: 01 Oct 2016 Journal: Chemical Science, volume 7, pages 6,484-6,491 (issn: 2041-6520, eissn: 2041-6539, Copyright policy)
  • Publisher: Royal Society of Chemistry (RSC)
  • Country: United Kingdom
Abstract
Through the genetic incorporation of a single phenyl azide group into superfolder GFP (sfGFP) at residue 148 we provide a molecular description of how this highly versatile chemical handle can be used to positively switch protein function in vitro and in vivo via either photochemistry or bioconjugation. Replacement of H148 with p-azido-L-phenylalanine (azF) blue shifts the major excitation peak ∼90 nm by disrupting the H-bond and proton transfer network that defines the chromophore charged state. Bioorthogonal click modification with a simple dibenzylcyclooctyne or UV irradiation shifts the neutral-anionic chromophore equilibrium, switching fluorescence to the o...
Subjects
free text keywords: Quantum yield, Chromophore, Fluorescence, Crystal structure, Chemistry, Bioorthogonal chemistry, Organic chemistry, Green fluorescent protein, Phenyl azide, chemistry.chemical_compound, Bioconjugation, Photochemistry
24 references, page 1 of 2

1 K. Lang and J. W. Chin, Chem. Rev., 2014, 114, 4764-4806.

2 C. C. Liu and P. G. Schultz, Annu. Rev. Biochem., 2010, 79, 413-444.

3 W. H. Zhang, G. Otting and C. J. Jackson, Curr. Opin. Struct. Biol., 2013, 23, 581-587.

4 J. W. Chin, Annu. Rev. Biochem., 2014, 83, 379-408.

5 K. Lang and J. W. Chin, ACS Chem. Biol., 2014, 9, 16-20.

6 S. Tyagi and E. A. Lemke, Curr. Opin. Struct. Biol., 2015, 32, 66-73.

7 C. Walsh, Posttranslational modication of proteins : expanding nature's inventory, Roberts and Co. Publishers, Englewood, Colo., 2006.

8 I. Nikic and E. A. Lemke, Curr. Opin. Chem. Biol., 2015, 28, 164-173.

9 C. M. Haney, R. F. Wissner and E. J. Petersson, Curr. Opin. Chem. Biol., 2015, 28, 123-130.

10 S. Reddington, P. Watson, P. Rizkallah, E. Tippmann and D. D. Jones, Biochem. Soc. Trans., 2013, 41, 1177-1182.

11 G. T. Hermanson, Bioconjugate techniques, Elsevier/Academic Press, London, 3rd edn, 2013.

12 S. A. Flemming, Tetrahedron, 1995, 51, 12479-12520.

13 J. Chin, S. Santoro, A. Martin, D. King, L. Wang and P. Schultz, J. Am. Chem. Soc., 2002, 124, 9026-9027.

14 J. W. Chin, T. A. Cropp, J. C. Anderson, M. Mukherji, Z. Zhang and P. G. Schultz, Science, 2003, 301, 964-967.

15 N. Gritsan and M. Platz, in Organic Azides: Syntheses and Applications, ed. S. Br¨ase and K. Banert, John Wiley & Sons, Ltd., 2010, ch. 11, pp. 311-372.

24 references, page 1 of 2
Abstract
Through the genetic incorporation of a single phenyl azide group into superfolder GFP (sfGFP) at residue 148 we provide a molecular description of how this highly versatile chemical handle can be used to positively switch protein function in vitro and in vivo via either photochemistry or bioconjugation. Replacement of H148 with p-azido-L-phenylalanine (azF) blue shifts the major excitation peak ∼90 nm by disrupting the H-bond and proton transfer network that defines the chromophore charged state. Bioorthogonal click modification with a simple dibenzylcyclooctyne or UV irradiation shifts the neutral-anionic chromophore equilibrium, switching fluorescence to the o...
Subjects
free text keywords: Quantum yield, Chromophore, Fluorescence, Crystal structure, Chemistry, Bioorthogonal chemistry, Organic chemistry, Green fluorescent protein, Phenyl azide, chemistry.chemical_compound, Bioconjugation, Photochemistry
24 references, page 1 of 2

1 K. Lang and J. W. Chin, Chem. Rev., 2014, 114, 4764-4806.

2 C. C. Liu and P. G. Schultz, Annu. Rev. Biochem., 2010, 79, 413-444.

3 W. H. Zhang, G. Otting and C. J. Jackson, Curr. Opin. Struct. Biol., 2013, 23, 581-587.

4 J. W. Chin, Annu. Rev. Biochem., 2014, 83, 379-408.

5 K. Lang and J. W. Chin, ACS Chem. Biol., 2014, 9, 16-20.

6 S. Tyagi and E. A. Lemke, Curr. Opin. Struct. Biol., 2015, 32, 66-73.

7 C. Walsh, Posttranslational modication of proteins : expanding nature's inventory, Roberts and Co. Publishers, Englewood, Colo., 2006.

8 I. Nikic and E. A. Lemke, Curr. Opin. Chem. Biol., 2015, 28, 164-173.

9 C. M. Haney, R. F. Wissner and E. J. Petersson, Curr. Opin. Chem. Biol., 2015, 28, 123-130.

10 S. Reddington, P. Watson, P. Rizkallah, E. Tippmann and D. D. Jones, Biochem. Soc. Trans., 2013, 41, 1177-1182.

11 G. T. Hermanson, Bioconjugate techniques, Elsevier/Academic Press, London, 3rd edn, 2013.

12 S. A. Flemming, Tetrahedron, 1995, 51, 12479-12520.

13 J. Chin, S. Santoro, A. Martin, D. King, L. Wang and P. Schultz, J. Am. Chem. Soc., 2002, 124, 9026-9027.

14 J. W. Chin, T. A. Cropp, J. C. Anderson, M. Mukherji, Z. Zhang and P. G. Schultz, Science, 2003, 301, 964-967.

15 N. Gritsan and M. Platz, in Organic Azides: Syntheses and Applications, ed. S. Br¨ase and K. Banert, John Wiley & Sons, Ltd., 2010, ch. 11, pp. 311-372.

24 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue