On the perturbative expansion of a quantum field theory around a topological sector

Article, Preprint English OPEN
Rovelli , Carlo; Speziale , Simone;
(2007)
  • Publisher: Springer Verlag
  • Related identifiers: doi: 10.1007/s10714-006-0378-y
  • Subject: General Relativity and Quantum Cosmology | topological theories | loop quantum gravity | [ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] | [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] | 04.60, 04.60.Pp | quantum gravity

7 pages; The idea of treating general relativistic theories in a perturbative expansion around a topological theory has been recently put forward in the quantum gravity literature. Here we investigate the viability of this idea, by applying it to conventional Yang--Mill... View more
  • References (15)
    15 references, page 1 of 2

    [1] M. H. Goroff and A. Sagnotti, “The Ultraviolet Behavior Of Einstein Gravity,” Nucl. Phys. B 266 (1986) 709.

    [2] C. Rovelli. Quantum Gravity. (Cambridge University Press, Cambridge 2004.)

    [4] E. Witten, “(2+1)-Dimensional Gravity As An Exactly Soluble System,” Nucl. Phys. B 311 (1988) 46.

    [5] C. Rovelli, “The Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model in the loop representation basis,” Phys. Rev. D 48 (1993) 2702

    [6] M. B. Halpern, “Field Strength Formulation Of Quantum Chromodynamics,” Phys. Rev. D 16 (1977) 1798.

    M. Schaden, H. Reinhardt, P. A. Amundsen and M. J. Lavelle, “An Effective Action For Yang-Mills Field Strengths,” Nucl. Phys. B 339 (1990) 595.

    A. S. Cattaneo, P. Cotta-Ramusino, F. Fucito, M. Martellini, M. Rinaldi, A. Tanzini and M. Zeni, “Fourdimensional Yang-Mills theory as a deformation of topological BF theory,” Commun. Math. Phys. 197 (1998) 571 [arXiv:hep-th/9705123].

    [8] J. F. Plebanski, “On the separation between Einsteinien substructure,” J. Math. Phys. 12 (1977) 2511. R. Capovilla, T. Jacobson, J. Dell and L. Mason, “Selfdual two forms and gravity,” Class. Quant. Grav. 8 (1991) 41. R. De Pietri and L. Freidel, “so(4) Plebanski Action and Relativistic Spin Foam Model,” Class. Quant. Grav. 16 (1999) 2187 [arXiv:gr-qc/9804071]. M. P. Reisenberger, “Classical Euclidean general relativity from *left-handed area = right-handed area*,” arXiv:gr-qc/9804061.

    [9] J. W. Barrett and L. Crane, “Relativistic spin networks and quantum gravity,” J. Math. Phys. 39 (1998) 3296 [arXiv:gr-qc/9709028]. A. Perez, “Spin foam quantization of SO(4) Plebanski's action,” Adv. Theor. Math. Phys. 5 (2002) 947 [Erratum-ibid. 6 (2003) 593] [arXiv:gr-qc/0203058].

    [10] S. W. MacDowell and F. Mansouri, “Unified Geometric Theory Of Gravity And Supergravity,” Phys. Rev. Lett. 38 (1977) 739 [Erratum-ibid. 38 (1977) 1376].

  • Similar Research Results (3)
  • Metrics
Share - Bookmark